
Quasi-Distances and Weighted Finite Automata

Timothy Ng, David Rappaport, and Kai Salomaa

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{ng, daver, ksalomaa}@cs.queensu.ca

Abstract. We show that the neighbourhood of a regular language L
with respect to an additive quasi-distance can be recognized by an ad-
ditive weighted finite automaton (WFA). The size of the WFA is the
same as the size of an NFA (nondeterministic finite automaton) for L
and the construction gives an upper bound for the state complexity of
a neighbourhood of a regular language with respect to a quasi-distance.
We give a tight lower bound construction for the determinization of an
additive WFA using an alphabet of size five. The previously known lower
bound construction needed an alphabet that is linear in the number of
states of the WFA.

Keywords: regular languages, weighted finite automata, state complex-
ity, distance measures

1 Introduction

In many applications it is crucial to measure the similarity between data. How
we define the distance between objects depends on what the objects we want to
compare are and why we want to compare them [5]. One of the most commonly
used similarity measures for words is the Levenshtein distance [13], also called
the edit distance [4, 11, 12, 15]. By the edit distance between languages L1 and L2

we mean the smallest distance between a word of L1 and of L2, respectively. This
definition is natural for error correction applications; however, other definitions
such as the relative distance or Hausdorff distance have also been considered [3,
5].

The edit distance is additive with respect to concatenation of words in the
sense defined by Calude et al. [2]. Pighizzini [15] has shown that the edit dis-
tance between a word and a language recognized by a one-way nondeterministic
auxiliary pushdown automaton is computable in polynomial time. Konstantini-
dis [12] showed that the edit distance of a regular language, that is, the smallest
edit distance between two distinct words in the language can be computed in
polynomial time. Han et al. [8] gave a polynomial time algorithm to compute the
edit distance between a regular language and a context-free language. Error/edit
systems for error correction have been studied by Kari and Konstantinidis [10],
and the error correction capabilities of regular languages with respect to edit
operations were recently investigated by Benedikt et al. [1].

A quasi-distance is a generalization of the notion of distance in that it allows
the possibility of distinct elements having distance zero. Calude et al. [2] showed

that the neighbourhood of a regular language with respect to an additive distance
or quasi-distance is regular. The neighbourhood of radius r of a language L
consists of all words that have distance at most r from some word of L.

In an additive weighted finite automaton (WFA) [17] the weight of a path is
the sum of the weights of the individual transitions that make up the path and
the weight of an accepted word w is the minimum weight of a path from the
start state to a final state that spells out w. Note that this differs significantly
from weighted automata used, for example, in image processing applications [6,
7].

For a given nondeterministic finite automaton (NFA) A, an additive distance
d and radius r, Salomaa and Schofield [17] gave a construction for an addi-
tive weighted finite automaton (WFA) which recognizes the neighbourhood of
radius r of the language recognized by A. The construction relies on the fact
that additive distances are finite, that is, the neighbourhood of any word is al-
ways finite. This makes the construction not suitable for quasi-distances, since
neighbourhoods of additive quasi-distances are not guaranteed to be finite [2].

Here we show that neighbourhoods of a regular language with respect to
an additive quasi-distance can be recognized by a WFA. Given an NFA A, the
WFA recognizing a constant radius neighbourhood of L(A) can be constructed
in polynomial time. The construction relies on the property that the neighbour-
hoods with respect to a quasi-distance are regular and a finite automaton for
the neighbourhood can be constructed effectively. The construction yields also
an upper bound for the size of a deterministic finite automaton (DFA) needed
to recognize the neighbourhood of radius r of a regular language (given by an
NFA) with respect to a quasi-distance. The upper bound is significantly better
than the bound obtained by constructing an NFA for the neighbourhood [2] and
then determinizing the NFA.

We study also the state complexity of additive WFAs. A WFA A within a
given weight boundR recognizes a regular language, and Salomaa and Schofield [17]
gave an upper bound for the size of a DFA for this language. They also gave
a matching lower bound construction; however, the WFAs used for the lower
bound construction needed an alphabet of size linear in the number of states of
the WFA. Here we give a tight lower bound construction for the “determinization
of WFAs” using a five-letter alphabet.

The paper concludes with a discussion of open problems on the state com-
plexity of neighbourhoods of a regular language with respect to an additive
distance or quasi-distance.

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata and
regular languages [9, 19, 20]. A general reference for weighted finite automata
is [6].

In the following Σ is always a finite alphabet, Σ∗ is the set of words over Σ
and ε is the empty word. The length of a word w is |w|. When there is no danger

of confusion, a singleton set {w} is denoted simply as w. The set of non-negative
integers (respectively, rationals) is N0 (respectively, Q0).

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q×Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final
states. We extend the transition function δ to Q×Σ∗ → 2Q in the usual way. A
word w ∈ Σ∗ is accepted by A if δ(q0, w) ∩ F 6= ∅ and the language recognized
by A consists of all strings accepted by A.

The automaton A is a deterministic finite automaton (DFA) if, for all q ∈ Q
and a ∈ Σ∗, δ(q, a) either consists of one state or is undefined. A DFA A is
complete if δ is defined for all q ∈ Q and a ∈ Σ. Two states p and q of a DFA A
are equivalent if δ(p, w) ∈ F if and only if δ(q, w) ∈ F for every string w ∈ Σ∗.
A DFA A is minimal if each state of Q is reachable from the initial state and no
two states are equivalent.

The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation ≡L⊆
Σ∗ ×Σ∗ defined by setting, for x, y ∈ Σ∗,

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L⇔ yz ∈ L].

A language L is regular if and only if the index of ≡L is finite and, in this case,
the index of ≡L is equal to the size of the minimal complete DFA for L [19, 20].
The minimal DFA for a regular language L is unique. The state complexity of
L, sc(L), is the size of the minimal complete DFA recognizing L.

Definition 1 ([17]). An additive weighted finite automaton (WFA) is a 6-tuple
A = (Q,Σ, γ, ω, q0, F) where Q is a finite set of states, Σ is an alphabet, γ :
Q×Σ → 2Q is the transition function, ω : Q×Σ ×Q→ Q0 is a partial weight
function where ω(q1, a, q2) is defined if and only if q2 ∈ γ(q1, a), q0 ∈ Q is the
initial state, and F ⊆ Q is the set of accepting states.

Strictly speaking, the transitions of γ are also determined by the domain of
the partial function β. In the following by a WFA we always mean an additive
weighted finite automaton as in Definition 1. By a transition of A on symbol a ∈
Σ we mean a triple (q1, a, q2) such that q2 ∈ γ(q1, a), q1, q2 ∈ Q. A computation
path α of a WFA A along a word w = a1a2 · · · am, ai ∈ Σ, i = 1, . . . ,m, from
state p1 to p2 is a sequence of transitions that spell out the word w,

α = (q0, a1, q1)(q1, a2, q2) · · · (qm−1, am, qm),

where p1 = q0, p2 = qm, and qi ∈ γ(qi−1, ai), 1 ≤ i ≤ m. The weight of a
computation path is

ω(α) =

m∑
i=1

ω(qi−1, ai, qi).

We let Θ(p1, w, p2) denote the set of all computation paths along a word w from
p1 to p2. The language recognized by A within the weight bound r ≥ 0 is the set

of words for which there exists a computation path that is accepted by A and
has weight at most r, defined as

L(A, r) = {w ∈ Σ∗ : (∃f ∈ F)(∃α ∈ Θ(q0, w, f)) ω(α) ≤ r}.

Proposition 1 ([17]). If A is a WFA with n states where all transition weights
are integers and r ∈ N0, then L(A, r) can be recognized by a DFA with at most
(r + 2)n states.

3 WFA Construction for a Quasi-Distance
Neighbourhood

We construct a WFA to recognize the neighbourhood of a regular language with
respect to a quasi-distance. First we recall some definitions concerning additive
distances and quasi-distances between words [2].

A function d : Σ∗ ×Σ∗ → Q0 is a distance if it satisfies, for all x, y, z ∈ Σ∗,

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z).

The function d is a quasi-distance if it satisfies conditions 2 and 3 and d(x, y) = 0
always when x = y, that is, a quasi-distance allows the possibility that distinct
word may have distance zero. The neighbourhood of radius r of a language L is
the set

E(L, d, r) = {x ∈ Σ∗ : (∃y ∈ L) d(x, y) ≤ r}.

A distance d is said to be finite if the neighbourhood of any given radius of an
individual word with respect to d is finite. A (quasi-)distance d is additive if for
every factorization w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

It is known that the neighbourhood of a regular language with respect to a
quasi-distance is regular [2]. The next lemma constructs a WFA for this language.
The construction is inspired by related constructions in [2, 18].

An additive (quasi-)distance d is determined by the finite number of values
d(a, b), d(a, ε), where a, b ∈ Σ. For the complexity estimate of the lemma we
assume that d is a fixed additive quasi-distance that is given by listing the
values d(a, b), d(a, ε), a, b ∈ Σ.

Lemma 1. Let N = (Q,Σ, δ, q0, F) be an NFA with n states, d an additive
quasi-distance, and R ≥ 0 is a constant. There exists an additive WFA A with
n states such that for any 0 ≤ r ≤ R,

L(A, r) = E(L(N), d, r)

Furthermore, the WFA A can be constructed in time O(n3).

Proof. We define an additive WFA A = (Q,Σ, γ, ω, q0, F) as follows. The tran-
sition function γ is defined by setting, for p ∈ Q, a ∈ Σ,

γ(p, a) = {q : (∃x ∈ Σ∗) q ∈ δ(p, x) and d(a, x) ≤ R}.

That is, for each pair of states p, q, we add a transition from p to q on a in the
WFA A if there is a word x ∈ Σ∗ with d(a, x) ≤ R that takes p to q in the NFA
N . The transition (p, a, q) in A has weight

ω((p, a, q)) = min
x∈Σ∗

{d(a, x) : q ∈ δ(p, x)}. (1)

We claim that a word w spells out a path in A with weight r (≤ R) from the
start state q0 to a state q1 if and only if some word u with d(w, u) ≤ r takes the
state q0 to q1 in the NFA B.

We prove the “only if” direction of the claim using induction on the length
of w. If w = ε, then q1 = q0 and there is nothing to prove. For the inductive
step consider w = ub, u ∈ Σ∗, b ∈ Σ, where the claim holds for u. Since w takes
state q0 to q1 by a path with weight r in the WFA A, the word u takes q0 to a
state p by a path of weight r1 where r1 + ω(p, b, q1) = r.

By the inductive assumption, there exists up ∈ Σ∗, d(u, up) ≤ r1 such that
up in the NFA N takes q0 to the state p. By the definition of the transition
weights of A in (1), there exists a word vp,b, with d(b, vp,b) = ω(p, b, q1) such
that in the NFA N the word vp,b takes state p to state q1.

Since d is additive and r1 + ω(p, b, q1) = r, we have

E(u, d, r1) · E(b, d, ω(p, b, q1)) ⊆ E(w, d, r).

Thus, d(w, upvp,b) ≤ r and in the NFA N the word upvp,b takes the start state
q0 to q1. This concludes the proof of the “only if” direction of the claim.

An analogous argument establishes the “if” direction of the claim. Since the
start states of A and N coincide and A and N have the same set of final states,
the claim implies that, for any r ≤ R, L(A, r) = E(L(N), d, r).

It remains to give an upper bound for the time complexity of finding the
weights (1) in order to verify the claim concerning the time bound for construct-
ing A. Since d is additive, for given p, q ∈ Q and a ∈ Σ, the set of words x
such that d(a, x) ≤ R and x takes p to q in the NFA N is regular. This means
that, for p ∈ Q and a ∈ Σ, the set γ(p, a) can be efficiently constructed and the
weights of the transitions of N are computed as follows.

A word x = b1b2 · · · bm, bi ∈ Σ is in the neighbourhood of a of radius R if
and only if there exists an index i ∈ {1, . . . ,m} such that

d(a, bi) +
∑

j∈{1,...,m},j 6=i

d(ε, bj) ≤ R.

For the radius R neighbourhood of a, a ∈ Σ, we define the two-state WFA
Ba = ({I0, I1}, Σ, η, ρ, I0, {I1}), shown in Figure 1. The states of Ba are {I0, I1}.
For each symbol σ ∈ Σ, we define self-loop transitions η(q, σ) = q with weight

I0start I1
σ|d(σ, a)

σ|d(σ, ε) σ|d(σ, ε)

Fig. 1. The WFA Ba recognizing the language {x ∈ Σ : d(a, x) ≤ R}
.

d(σ, ε) for both states and the transition η(I0, σ) = I1 with weight d(σ, a) for the
transition which consumes the symbol a.

Let Ma = ({I0, I1} × Q,Σ, δa, ωa, (I0, q0), I1 × F) be the WFA obtained as
a cross product of the WFA Ba and the NFA N . The states of Ma are of the
form (P, q), where P ∈ {I0, I1} and q ∈ Q. The transitions of Ma are defined by
setting, for q ∈ Q, σ ∈ Σ,

δa((I0, q), σ) = {(I0, δ(q, σ)), (I1, δ(q, σ))},
δa((I1, q), σ) = {(I1, δ(q, σ))}.

The weights of transitions ((P1, q1), σ, (P2, q2)) defined in δMa
are defined

ωa((P1, q1), σ, (P2, q2)) =

{
d(σ, ε), if P1 = P2;

d(σ, a), if P1 6= P2.

For states p, q ∈ Q, paths from states (I0, p) to (I1, q) are labelled by words x
with weight d(a, x).

We compute the paths with the least weight for every pair of states of Ma.
There are 2n states in the product machine and minimal weight paths for every
pair of states can be computed in time O(n3) via the Floyd-Warshall algorithm
[4]. A transition from p to q on a is added if there is a path from (I0, p) to (I1, q)
with weight at most R. ut

Lemma 1 gives the following result.

Theorem 1. Suppose that L has an NFA with n states and d is a quasi-distance.
The neighbourhood of L of radius R can be recognized by an additive WFA having
n states within weight bound R.

As a consequence of Theorem 1 and Proposition 1 we get in Corollary 1 an
upper bound for the state complexity of the neighbourhood of a regular language
with respect to an additive quasi-distance d where all values d(u, v), u, v ∈ Σ∗
are integers.

We note that if a quasi-distance d associates a non-negative integer value
withany pair of words, then the weights of the WFA A constructed in the proof
of Lemma 1 are integral. Furthermore, a neighbourhood with respect to a quasi-
distance d with rational values can be converted to a neighbourhood with respect

to a quasi-distance with integral values by multiplying the radius and the values
of d by a suitably chosen constant. This can be done since the distance between
any two words is determined by distances between two alphabet symbols and
alphabet symbols and the empty word.

Corollary 1. Let N be an NFA with n states, R ∈ N0, and d a quasi-distance
Σ∗ × Σ∗ → N0. Then the neighbourhood E(L(N), d, R) can be recognized by a
DFA with (R+ 2)n states.

The upper bound (R + 2)n is significantly better than what is obtained by
first constructing an NFA for E(L(N), d, R) as in [2] and then determinizing the
NFA. If the set of states of N is Q, Theorem 8 of [2] 1 constructs an NFA for
E(L(N), d, R) with set of states Q×D where D ⊆ N, roughly speaking, consists
of all integers at most R that can be represented as a sum of distances between
an element of Σ and an element of Σ∗.

We do not have a lower bound corresponding to the upper bound of Corol-
lary 1, and the state complexity of neighbourhoods of regular languages with
respect to an additive distance or quasi-distance remains an open question. Po-
varov [16] has given a lower bound for the radius-one Hamming neighbourhood
of a regular language that is tight within an order of magnitude.

In the next section we will give a lower bound construction for the size of
a DFA needed to simulate an additive WFA that matches the upper bound
of Proposition 1. However, this does not necessarily shed light on the state
complexity of neighbourhoods of regular languages because an arbitrary additive
WFA need not recognize a neighbourhood of a (regular) language.

4 State Complexity of Weighted Finite Automata

Salomaa and Schofield [17] have given a matching lower bound construction for
Proposition 1 using a family of WFAs over an alphabet of size 2n − 1 where n
is the number of states of the WFA. Here, we define a family of WFAs over a
five-letter alphabet which reaches the upper bound (r + 2)n.

Let An = (Qn, Σ, γ, ω, 1, n) be an additive WFA with Qn = {1, 2, . . . , n} and
Σ = {a, b, c, d, e}. The transition function γ with q ∈ Q and σ ∈ Σ is defined

γ(q, σ) =

{1, 2}, if q = 1, σ = a or q = 2, σ = b;

{3}, if q = 1, σ = b or q = 2, σ = a;

{q + 1}, if q = 3, . . . , n− 1 and σ = a, b;

{q}, if q = 1, . . . , n and σ = c, d, e.

1 Theorem 8 of [2] assumes that N is deterministic. However, the construction used
in the proof works also for an NFA.

The weight function ω for a transition α ∈ Qn ×Σ ×Qn is defined

ω(α) =

1, if α = (1, c, 1);

1, if α = (2, d, 2);

1, if α = (q, e, q) for all q ∈ Q;

0, for all other transitions defined by γ.

The transition diagram for An is shown in Figure 2 with the non-zero weights of
each transition marked after the alphabet symbols labeling the transition. For
example, state 1 has self-loops on a and d with weight zero and self-loops on c
and e with weight one.

We will use the WFAs An to give a lower bound for the size of DFAs for a
language recognized by a WFA within a given weight bound. First in Lemma 2
we establish a technical property of the weights of computations of An reaching
a particular state and for this purpose we introduce the following notation.

For 0 ≤ ki ≤ r + 1 and 1 ≤ i ≤ n, we define the words

w(k1, . . . , kn) =

{
acknbdkn−1ackn−2 · · · ack3bdk2ck1 , if n is odd;

abdknackn−1bdkn−2 · · · ack3bdk2ck1 , if n is even.

3

1start

2

4 · · · n− 1 n

a, d
c, e|1

b, c
d, e|1

ab

b

a

a, b a, b a, b a, b

c, d
e|1

c, d
e|1

c, d
e|1 c, d

e|1

Fig. 2. The weighted finite automaton An used in the proof of Lemma 2.

Lemma 2. Let n ∈ IN. The WFA An after processing the input w(k1, . . . , kn)
can reach the state s, 1 ≤ s ≤ n, on a path with weight ks. Furthermore, any
computation of An on input w(k1, . . . , kn) that reaches state s, 1 ≤ s ≤ n, has
weight ks.

Proof. In the string w(k1, . . . , kn) occurrences of symbols a and b alternate. Thus
the computation of A can exit states 1 and 2 after making a self-loop on a in
state 1 or a self-loop on b in state 2 and, furthermore, this is the only way for
the computation to get out of the “binary cycle” of states 1 and 2.

Below using a case analysis we verify that, for 1 ≤ s ≤ n, An has a compu-
tation with weight ks that ends in state s and, furthermore, any computation
ending in s has weight ks.

(i) First consider the case where n is even. Consider a computation of An that
reaches a state s where s ≥ 2 is even. Note that after exiting the cycle of
states 1 and 2, only the symbols a or b move the computation to the next
state. Thus, the only way to reach s is that the computation must make a
self-loop on b in state 2 directly before reading the substring dks . After that
the following ks symbols d are read via the weight one transitions. This also
applies for the case s = 2.
If s ≥ 3 is odd, in order to reach state s, directly before reading the substring
cks the computation must on input a make a self-loop in state 1 and then
the following ks symbols c are read with transitions of weight one in state 1.
Finally consider the case s = 1. In order to end in state 1, the computation
must not have made any self-loops on a in state 1 or b in state 2. If this is
done the computation ends in a state z with z ≥ 2. Thus, reading the final
b takes the computation from state 2 to state 1, where the transition on d
is taken k2 times. The computation remains in state 1 and reads the rest of
the word ck1 on the transition of weight 1 exactly k1 times.

(ii) Next consider the case where n is odd. The above argument remains the
same, almost word for word. The only minor difference is in the case s = n.
In order to reach state n, the computation must read the first symbol a using
a self-loop and then the following kn symbols c using transitions of weight
1. (Note that when n is odd, in w(k1, . . . , kn) the first symbol a is followed
by kn symbols c.)

ut

Lemma 3. Let An be the WFA defined above and r ∈ IN. Then the minimal
DFA for L(An, r) needs (r + 2)n states.

Proof. It is sufficient to show that all words w(k1, . . . , kn), 0 ≤ ki ≤ r + 1,
i = 1, . . . , n, belong to distinct classes of ≡L(An,r).

Consider two distinct words w(k1, . . . , kn) and w(k′1, . . . , k
′
n) with 0 ≤ ki, k′i ≤

r + 1, i = 1, . . . , n. There exists an index j such that kj 6= k′j . Without loss of
generality, we assume that kj < k′j . Choose

z = er−kjan−j .

Since kj < k′j ≤ r + 1, it follows that r − kj ≥ 0 and z is a well-defined word.
We claim that

w(k1, . . . , kn) · z ∈ L(A, r), w(k′1, . . . , k
′
n) · z 6∈ L(A, r).

By Lemma 2, A has a computation on input w(k1, . . . , kn) that ends in state j
with weight kj . In state j, A reads the first r − kj symbols e of z, after which
the total weight is kj + (r − kj) = r. The zero weight transitions on the suffix
an−j take the automaton from state j to the final state n.

Now consider from which states q the WFA A can reach the accepting state
n on input z. On any state of A, the symbols c, d, e define self-loops. On states
3 ≤ q ≤ n− 1, transitions to state q+ 1 only occur on a, b. For states q = 1, 2, a
transition to state q+ 1 occurs only on a. Thus, A can reach the accepting state
n from a state q on input z only if q = j.

Thus, the only possibility for A to accept w(k′1, . . . , k
′
n) · z would be that the

computation has to reach state j on the prefix w(k′1, . . . , k
′
n). By Lemma 2, the

weight of this computation can only be k′j . But when continuing the computation
on z from state j, A has to read the first r− kj symbols e, each with a self-loop
transition having weight one. After this, the weight of the computation will be
k′j + r − kj > r. Thus, w(k′1, . . . , k

′
n) · z 6∈ L(A, r).

Thus, the equivalence relation ≡L(A,r) has index at least (r + 2)n. ut

As a consequence of Lemma 3 and Proposition 1 we have:

Theorem 2. If A is an n state WFA with integer weights for transitions and
r ∈ IN, then

sc(L(A, r)) ≤ (r + 2)n.

For n, r ∈ IN, there exists an n state WFA A with integral weights defined
over a five-letter alphabet such that sc(L(A, r)) = (r + 2)n.

5 Conclusion

For the state complexity of a language recognized by an additive WFA with a
given weight we have established a tight lower bound using a constant size alpha-
bet. The earlier known lower bound construction [17] used a variable alphabet
that has size linear in the number of states of the WFA.

We have also constructed a WFA recognizing the neighbourhood of a regular
language with respect to an additive quasi-distance. This yields an upper bound
(r + 2)n for the state complexity of a neighbourhood of radius r of an n state
NFA language with respect to an additive quasi-distance. The upper bound
is significantly better than a bound obtained by directly constructing an NFA
for the neighbourhood [2] and then determinizing the NFA. The same upper
bound (r + 2)n has been known previously for neighbourhoods with respect to
an additive distance.

The precise state complexity of neighbourhoods with respect to a distance or
a quasi-distance remains open. Povarov [16] gives an upper bound n · 2n−1 + 1
for the Hamming neighbourhood of radius one of an n-state regular language
and an almost matching lower bound. For neighbourhoods of radius r ≥ 2 no
good lower bounds are known. Finding such lower bounds will be a topic of a
forthcoming paper [14].

References

1. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages.
Journal of Computer and System Science 79 (2013) 1302–1321

2. Calude, C.S., Salomaa, K., Yu, S.: Distances and quasi-distances between words.
Journal of Universal Computer Science 8(2) (2002) 141–152

3. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theoretical Computer Science 286 (2002) 117–138

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd ed. MIT Press, Cambridge, Massachuchetts (2001)

5. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer-Verlag, Berlin-
Heidelberg (2009)

6. Droste, M., Kuich W., Vogler, H. (Eds.): Handbook of Weighted Automata. EATCS
Monographs in Theoretical Computer Science, Springer (2009)

7. Eramian, M.: Efficient simulation of nondeterministic weighted finite automata.
Journal of Automata, Languages, and Combinatorics 9 (2004) 257–267

8. Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language
and a context-free language. International Journal of Foundations of Computer
Science 24 (2013) 1067–1082

9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata — A survey. Inf. Comput. 209 (2011) 456–470

10. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Jour-
nal of Automata, Languages, and Combinatorics 9 (2004) 293–309

11. Konstantinidis, S.: Transducers and the properties of error detection, error-
correction, and finite-delay decodability. Journal of Universal Computer Science
8 (2002) 278–291

12. Konstantinidis, S.: Computing the edit distance of a regular language. Information
and Computation 205 (2007) 1307–1316

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8) (1966) 707–710

14. Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and
approximate pattern matching. Submitted for publication (March 2015)

15. Pighizzini, G.: How hard is computing the edit distance? Information and Com-
putation 165 (2001) 1–13

16. Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular
language. Proceedings of the 1st International Conference Language and Automata
Theory and Applications, LATA 2007, pp. 509–520

17. Salomaa, K., Schofield, P.: State complexity of additive weighted finite automata.
Intenational Journal of Foundations of Computer Science 18(6) (2007) 1407–1416

18. Schofield, P.: Error Quantification and Recognition Using Weighted Finite Au-
tomata. MSc thesis, Queen’s University, Kingston, Canada (2006)

19. Shallit, J.: A Second Course in Formal Languages and Automata Theory, Cam-
bridge University Press (2009)

20. Yu, S.: Regular languages, in: Handbook of Formal Languages, Vol. I, (G. Rozen-
berg, A. Salomaa, Eds.), Springer, 1997, pp. 41–110

