
State Complexity of Prefix DistanceI

Timothy Ng∗, David Rappaport∗, Kai Salomaa∗

School of Computing, Queen’s University, Kingston, Ontario K7L 2N8, Canada

Abstract

The prefix distance between strings x and y is the number of symbol occurrences
in the strings that do not belong to the longest common prefix of x and y. The
suffix and the substring distances are defined analogously in terms of the longest
common suffix and longest common substring, respectively, of two strings. We
show that the set of strings within prefix distance k from an n state DFA
(deterministic finite automaton) language can be recognized by a DFA with

(k+ 1) · n− k(k+1)
2 states and that this number of states is needed in the worst

case. Also we give tight bounds for the nondeterministic state complexity of
the set of strings within prefix, suffix or substring distance k from a regular
language.

1. Introduction

Various similarity measures between strings and languages have been con-
sidered for information transmission applications. The edit distance counts the
number of substitution, insertion and deletion operations that are needed to
transform one string to another. The Hamming distance counts the number of
positions in which two equal length strings differ. A distance measure between
words can be extended in various ways as a distance between sets of strings (or
languages) [3, 4] and algorithms for computing the distance between languages
are important for error-detection and error-correction applications [4, 9, 10].
The descriptional complexity of error/edit systems has been considered by Kari
and Konstantinidis [8]. Other types of sequence similarity measures have been
considered e.g. by Apostolico [1].

Instead of counting the number of edit operations, the similarity of strings
can be defined by way of their longest common prefix, suffix, or substring,
respectively [4]. For example, the prefix distance of strings x and y is the sum

IAn extended abstract of this paper appeared in the Proceedings of the 20th International
Conference Implementation and Application of Automata, Ume̊a, Sweden, August 18–21,
2015.

∗Corresponding author.
Email addresses: ng@cs.queensu.ca (Timothy Ng), daver@cs.queensu.ca (David

Rappaport), ksalomaa@cs.queensu.ca (Kai Salomaa)

Preprint submitted to Elsevier April 2, 2016

of the length of the suffix of x and the suffix of y that occurs after their longest
common prefix. A parameterized prefix distance between regular languages
has been considered by Kutrib et al. [11] for estimating the fault tolerance of
information transmission applications.

The neighbourhood of radius k of a language L consists of all strings that
are within distance k from some string in L. Calude et al. [3] have shown that
the neighbourhood of a regular language with respect to an additive distance is
regular. A distance is said to be additive if it, in a certain sense, respects string
concatenation. This gives rise to the question how large is the (non)deterministic
finite automaton (DFA, respectively, NFA) needed to recognize the neighbour-
hood of a regular language, that is, what is the state complexity of neighbour-
hoods of regular languages.

Povarov [16] has given an improved upper bound and a closely matching
lower bound for the state complexity of Hamming neighbourhoods of radius
one. Upper bounds for the state complexity of neighbourhoods with respect to
an additive distance or quasi-distance have been obtained by the authors [14, 17]
using a construction based on weighted finite automata and a matching lower
bound was given recently in [15].

It follows from Choffrut and Pighizzini [4] that the prefix, suffix and substring
distances preserve regularity, that is, the neighbourhood of a regular language
of finite radius remains regular. Here we study the state complexity of these
neighbourhoods. The neighbourhood of radius r of a language L with respect
to the prefix distance, roughly speaking, consists of strings that share a “long”
prefix with a string u ∈ L, more precisely, it is required that the combined
length of the parts of w and u outside their longest common suffix is at most
the constant r. In view of this it seems reasonable to expect that the state com-
plexity of prefix distance neighbourhoods does not incur a similar exponential
size blow-up as the edit distance [15].

We show that if L is recognized by a deterministic finite automaton (DFA)
of size n, the prefix neighbourhood of L of radius k < n has a DFA of size

(k + 1) · n− k(k+1)
2 and that this bound cannot be improved in the worst case.

Our lower bound construction uses an alphabet of size n− 1 and we show that
the general upper bound cannot be reached using languages defined over a fixed
alphabet.

We consider also the nondeterministic state complexity of prefix, suffix and
substring neighbourhoods. If L has a nondeterministic finite automaton (NFA)
of size n, the neighbourhood of L of radius k can be recognized by an NFA of
size n+k. The upper bound for the substring neighbourhood of L of radius k is
(k+ 1) ·n+ 2k. In all cases we give matching lower bounds for nondeterministic
state complexity, and in the lower bound constructions L has, in fact, a DFA of
size n.

2. Preliminaries

Here we briefly recall some definitions and notation used in the paper. For
all unexplained notions on finite automata and regular languages the reader

2

may consult the textbook by Shallit [18] or the survey by Yu [19]. A survey
of distances is given by Deza and Deza [5]. Recent surveys on descriptional
complexity of regular languages include [6, 7, 12].

In the following Σ is always a finite alphabet, the set of strings over Σ is Σ∗

and ε is the empty string. The reversal of a string x ∈ Σ∗ is xR. The set of
nonnegative integers is N0. The cardinality of a finite set S is denoted |S| and
the powerset of S is 2S . A string w ∈ Σ∗ is a substring or factor of x if there
exist strings u, v ∈ Σ∗ such that x = uwv. If u = ε, then w is a prefix of x. If
v = ε, then w is a suffix of x.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, Q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q×Σ→ 2Q, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual
way. A string w ∈ Σ∗ is accepted by A if, for some q0 ∈ Q0, δ(q0, w)∩F 6= ∅ and
the language recognized by A consists of all strings accepted by A. An ε-NFA
is an extension of an NFA where transitions can be labeled by the empty string
ε [18, 19], i.e., δ is a function Q × (Σ ∪ {ε}) → 2Q. It is known that every ε-
NFA has an equivalent NFA without ε-transitions and with the same number of
states. An NFA A = (Q,Σ, δ, Q0, F) is a deterministic finite automaton (DFA)
if |Q0| = 1 and, for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one state or is
undefined. Two states p and q of a DFA A are equivalent if δ(p, w) ∈ F if and
only if δ(q, w) ∈ F for every string w ∈ Σ∗. A DFA A is minimal if each state
q ∈ Q is reachable from the initial state and no two states are equivalent.

Note that our definition of a DFA allows some transitions to be undefined,
that is, by a DFA we mean an incomplete DFA. It is well known that, for a
regular language L, the sizes of the minimal incomplete and complete DFAs
differ by at most one. The constructions in Section 3 are more convenient
to formulate using incomplete DFAs but our results would not change in any
significant way if we were to require that all DFAs are complete.

The (incomplete deterministic) state complexity of a regular language L,
sc(L), is the size of the minimal DFA recognizing L. The nondeterministic
state complexity of L, nsc(L), is the size of a minimal NFA recognizing L. A
minimal NFA recognizing a regular language need not be unique. A common
way of establishing lower bounds for nondeterministic state complexity relies on
fooling sets.

Definition 1. A set of pairs of strings S = {(x1, y1), . . . , (xm, ym)}, xi, yi ∈ Σ∗,
i = 1, . . . ,m, is a fooling set for a language L if xiyi ∈ L, i = 1, . . . ,m and, for
all 1 ≤ i < j ≤ m, xiyj 6∈ L or xjyi 6∈ L.

Proposition 1 ([2, 7]). If L has a fooling set S then nsc(L) ≥ |S|.

To conclude this section, we recall definitions of the distance measures used
in the following. Generally, a function d : Σ∗ × Σ∗ → [0,∞) is a distance if
it satisfies for all x, y, z ∈ Σ∗, the conditions d(x, y) = 0 if and only if x =
y, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z). The neighbourhood of a

3

language L of radius k with respect to a distance d is the set

E(L, d, k) = {w ∈ Σ∗ | (∃x ∈ L)d(w, x) ≤ k}.

Let x, y ∈ Σ∗. The prefix distance of x and y counts the number of symbols
which do not belong to the longest common prefix of x and y [4]. It is defined
by

dp(x, y) = |x|+ |y| − 2 · max
z∈Σ∗
{|z| | x, y ∈ zΣ∗}.

Similarly, the suffix distance of x and y counts the number of symbols which do
not belong to the longest common suffix of x and y and is defined

ds(x, y) = |x|+ |y| − 2 · max
z∈Σ∗
{|z| | x, y ∈ Σ∗z}.

The substring distance measures the similarity of x and y based on their longest
common continuous substring (or factor) and is defined

df (x, y) = |x|+ |y| − 2 · max
z∈Σ∗
{|z| | x, y ∈ Σ∗zΣ∗}.

The paper [4] refers to df as the subword distance. The term “subword dis-
tance” has been used also for a distance defined in terms of the longest common
noncontinuous subword [13].

3. State Complexity of Prefix Neighbourhoods

In this section we consider the deterministic state complexity of prefix neigh-
bourhoods. We construct a DFA for the neighbourhood of radius k with respect
to the prefix distance dp. After that we show that the construction is optimal by
giving a matching lower bound. The lower bound construction uses an alphabet
of size n+1 where n is the number of states of the DFA. We show that the upper
bound cannot be reached by languages defined over a constant size alphabet.

First, we define a function for use in the following proofs. For a given NFA
A = (Q,Σ, δ, q0, F), we define the function ϕA : Q→ N0 by

ϕA(q) = min
w∈Σ∗

{|w| | δ(q, w) ∈ F}. (1)

The function ϕA(q) gives the length of the shortest path from the state q to a
reachable final state. Note that under this definition, if q ∈ F , then ϕA(q) = 0.

Proposition 2. Let n > k ≥ 0 and L be a regular language recognized by a
DFA with n states. Then there is a DFA recognizing E(L, dp, k) with at most

n · (k + 1)− k(k+1)
2 states.

Proof. Let A = (Q,Σ, δ, q0, F) be the DFA that recognizes L. We construct a
DFA A′ = (Q′,Σ, δ′, q′0, F

′) that recognizes the neighbourhood E(L, dp, k). We
define the state set

Q′ = ((Q− F)× {1, . . . , k + 1}) ∪ F ∪ {p1, . . . , pk}.

The machine A′ has three types of states.

4

start f1

q f2

a

b

a

b b b b

Figure 1: The final state f1 is closer to q than f2 even though f1 is not reachable from q.

• States qf ∈ F are final states of A. A word that reaches qf is a word in
L(A).

• States p`, 1 ≤ ` ≤ k, are reached from the other types of states only on a
transition that was undefined in A. A state p` can be reached from p`−1

on any symbol a ∈ Σ and can only reach states p`′ where ` ≤ `′ ≤ k. A
word that reaches p` is not a prefix of a word in L(A) and has a distance
of ` from L(A).

• States (i, j) ∈ (Q − F) × {1, . . . , k + 1} are non-final states of A with a
counter component. If a word w reaches a state (i, j) in A′, then it is
prefix of a word recognized by A and is j steps away from the closest final
state of A. Note that the closest final state does not need to be reachable
from the state i. The closest final state would have been reachable earlier
in the computation of w and may not necessarily be reachable from i.

For example, in Figure 1, the word b reaches the state q and is two steps away
from the final state f1 and is four steps away from the final state f2. In this
case, f1 is considered the closest final state to q even though f1 is not reachable
from q. However, the word baa also reaches q but is three steps away from f1

and is still four steps away from f2.
Note that some states of Q′ are always unreachable and at the end of the

proof we calculate an upper bound for the number of reachable states.
The initial state q′0 is defined

q′0 =


q0, if q0 ∈ F ;

(q0, ϕA(q0)) if q0 6∈ F and ϕA(q0) ≤ k;

(q0, k + 1) if q0 6∈ F and ϕA(q0) > k.

The set of final states is given by

F ′ = ((Q− F)× {1, . . . , k}) ∪ F ∪ {p1, . . . , pk}.

Let qi,a = δ(i, a) for i ∈ Q and a ∈ Σ, if δ(i, a) is defined. Then for all a ∈ Σ,

5

the transition function δ′ is defined for states i ∈ F by

δ′(i, a) =


(qi,a, 1), if qi,a ∈ Q− F ;

qi,a, if qi,a ∈ F ;

p1, if δ(i, a) is undefined.

For states (i, j) ∈ (Q− F)× {1, . . . , k + 1}, δ′ is defined

δ′((i, j), a) =


qi,a, if qi,a ∈ F ;

(qi,a,min{j + 1, ϕA(qi,a)}), if ϕA(qi,a) or j + 1 ≤ k;

(qi,a, k + 1), if ϕA(qi,a) and j + 1 > k;

pj+1, if δ(i, a) is undefined.

Finally, we define δ′ for states p` for ` = 1, . . . , k − 1 by

δ′(p`, a) = p`+1.

We now show that a word w ∈ Σ∗ is recognized by A′ if and only if w is in
the neighbourhood E(L(A), dp, k). Let x ∈ L be a closest string to w according
to the prefix distance dp. There are three cases to consider.

1. First, suppose that x = wx′ for some x′ ∈ Σ∗. Then w ∈ E(L, dp, k)
if and only if |x′| ≤ k. Consider the computation on w. Since w is a
proper prefix of a word in L, the computation cannot end in a state p`.
if the computation ends in a final state in F , then x = w and w is in
both E(L, dp, k) and L(A′). Now suppose the computation ends in a state
(i, j). Since x is the closest word in L to w, there must be a shortest path
of length |x′| in the original DFA A from state i to a final state of A. By
definition, (i, j) is a final state if j = ϕA(i) ≤ k. Thus, j = ϕA(i) = |x′|
and (i, j) is a final state if and only if j = |x′| ≤ k.

2. Next, suppose that w = xw′ for some w′ ∈ Σ+. In this case, w ∈
E(L, dp, k) if and only if |w′| ≤ k. The machine reaches some final state
f of A once it reads all of x. Then the machine continues reading w′ until
it reaches some state q ∈ Q′. The state q is either a state (i, j) or a state
p`, since otherwise, q ∈ F and w′ = ε.

(a) Consider q = (i, j). By definition, (i, j) is a final state if j ≤ k. Since
x is a closest word in L to w, j = |w′| must be the distance of the
current computation from the closest final state f unless |w′| > k, in
which case j = k + 1. Otherwise, if j < |w′|, there was some state
(i′, j′) that was encountered during the computation of w′ with a
final state f ′ that was closer than f . Thus, if |w′| > k, then j = k+1
and (i, j) is not a final state. Otherwise, j = |w′| ≤ k and (i, j) is a
final state.

(b) Now consider when q 6= (i, j) and let w′ = w′1w
′
2. The computa-

tion from f on w′1 reaches some state q′ = (i′, j′) for which there is
no transition in A defined for the first symbol of w′2. By the same

6

reasoning as above, j′ = |w′1| < k. Since an undefined transition
was encountered on the first symbol of w′2, the machine goes to state
p|w′1|+1. From state p|w′1|+1, the machine reads the rest of w′2. Now,
if |w′| > k, then |w′2| > k − |w′1| and the computation on the rest of
w′2 fails when it reaches pk and there are no further transitions. Oth-
erwise, |w′| ≤ k and the computation of w′2 ends in a state p|w′1|+|w′2|,
which is a final state since |w′| = |w′1|+ |w′2| ≤ k.

3. Finally, suppose that w = pw′ and x = px′ with p ∈ Σ∗ and w′, x′ ∈ Σ+

such that p is the longest common prefix of w and x. Thus w ∈ E(L, dp, k)
if and only if |w′| + |x′| ≤ k. In this case, A′ reads w until it reaches a
state (ip, jp) on the prefix p. At this point, reading x′ from (ip, jp) will
take the machine to some final state f ∈ F , while reading w′ from (ip, jp)
takes the machine to some other state q ∈ Q′. Note that |x′| ≤ k, since
otherwise |x′|+ |w′| > k, and jp = ϕA(ip) = |x′|, since otherwise x would
not be a closest word to w. Now, q is either of the form (i, j) or a state
p`.

(a) Suppose q is of the form (i, j). Then j is either |w′| + |x′| or k + 1.
If |w′| > k − |x′|, then j = k + 1 and (i, j) is not a final state. If
j ≤ |w′| + |x′|, then there must be some final state f ′ ∈ F closer to
a state on the computation path of w′ from (ip, jp) which cannot be
the case if x is a closest word to w. Thus, j = |w′| + |x′| ≤ k and
(i, j) is a final state.

(b) Now, suppose q 6= (i, j) and let w′ = w′1w
′
2. The computation from

(ip, jp) on w′1 reaches some state q′ = (i′, j′) for which there is no
transition in A on the first symbol of w′2. By the same reasoning
as above, j′ = |w′1| < k − |x′|. Since an undefined transition was
encountered on the first symbol of w′2, the machine goes to state
p|w′1|+|x′|+1. From state p|w′1|+|x′|+1, the rest of w′2 is read. If |w′2| >
k−(|w′1|+|x′|), then the computation of w′2 falls off at pk. Otherwise,
the computation ends in state p|w′2|+|w′1|+|x′|. We have

|w′2|+ |w′1|+ |x′| = |w′|+ |x′| ≤ k

and thus, p|w′2|+|w′1|+|x′| is a final state.

If f = |F |, then the set of states Q′ has (n − f) · (k + 1) + k + f elements
but they cannot all be reachable. Based on the definition of the transitions of
δ′ we observe that if there is a transition entering a state (q, j), q ∈ Q − F ,
1 ≤ j ≤ k + 1, then ϕA(q) must be at least j. Thus, all elements of the set

Sur = {(q, j) | q ∈ Q− F, 1 ≤ j ≤ k + 1, j > ϕA(q)}

are unreachable as states of A′.
First we consider the case where A has at least k non-final states, that

is, |Q − F | ≥ k. Since all states of A are useful, each non-final state must
have a path leading to a final state. Now the cardinality of Sur is minimized,
informally speaking, when there are as few as possible non-final states q for

7

which ϕA(q) is “small”. By the definition of the function ϕA, if for some state
p the value ϕA(p) = ` ≥ 2, then there must exist another non-final state p′ with
ϕA(p) = ` − 1. This means that the cardinality of Sur is minimized when in
the DFA A for each 1 ≤ i ≤ k, exactly one non-final state qi has a shortest
path of length i that reaches a final state, and for all other non-final states
the length of the shortest path to a final state is greater than k. In this case,

Sur = {(qi, j) | i < j ≤ k + 1, i = 1, . . . , k} and |Sur| = k(k+1)
2 and the total

number of reachable states of A′ is at most

(n− f) · (k + 1) + k + f − k(k + 1)

2
.

This value is maximized as n · (k + 1)− k(k+1)
2 by choosing f = 1.

Finally, it remains to consider the case where |Q−F | < k, that is, f > n−k.
With this assumption we get

|Q′| = n · (k + 1)− (f − 1) · k ≤ n · (k + 1)− (n− k − 1) · k = n− k · (k + 1).

Thus, when A has fewer than k non-final states the size of A′ is less than the
claimed upper bound even assuming that all states of Q′ were reachable.

We have verified that at most n·(k+1)− k(k+1)
2 states of A′ can be reachable.

The lower bound construction that we present uses an alphabet with variable
size. We will show later that it is impossible to reach the upper bound (for all
n) with an alphabet of fixed size.

Lemma 3. For n > k ∈ N, there exists a DFA An with n states over an alphabet
of size n− 1 such that

sc(E(L(An), dp, k)) ≥ n · (k + 1)− k(k + 1)

2
.

Proof. We define a DFA An = (Qn,Σn, δn, q0, F) (Figure 2) by choosing

Qn = {0, . . . , n− 1}, Σn = {a, b, c2, . . . , cn−2},

q0 = 0, F = {0}, and the transition function is given by

• δn(0, a) = 1

• δn(q, a) = q for q = 1, . . . , n− 1,

• δn(q, b) = q + 1 mod n for q = 1, . . . , n− 1,

• δn(0, ci) = i for i = 2, . . . , n− 2,

Note that for every state q ∈ Qn − {0}, we have ϕAn
(q) = n− q.

We transform An into the DFA A′n = (Q′n,Σn, δ
′
n, q
′
0, F

′) by following the
construction from Proposition 2. To determine the reachable states of Q′n, we

8

0start

1 2

· · ·

n− 2n− 1

...

a

b

b

b

b

a a

aa

c2

cn−2b

Figure 2: The DFA An.

first consider states of the form (i, j) ∈ (Qn − {0}) × {1, . . . , k + 1}. For state
1, we can reach state (1, j) via the word a · aj . For states i ∈ {2, . . . , n− k− 1}
with ϕAn

(i) > k, we can reach state (i, j) via the word cia
j for j = 1, . . . , k+ 1.

For states i ∈ {n− k, . . . , n− 2} with ϕAn
(i) ≤ k, we can reach state (i, j) via

the word cia
j for j = 1, . . . , ϕAn

(i). However, states (i, j) with j > ϕAn
(i) are

unreachable by definition of A′n. For state n− 1, we can reach (n− 1, 1) via the
word abn−2 and states (n−1, j) are unreachable for j > 1 since ϕAn(n−1) = 1.
Thus the number of unreachable states in (Qn − {0})× {1, . . . , k + 1} is

n−1∑
i=n−k

|{i}×{ϕAn
(i)+1, . . . , k+1}| =

k∑
i=1

|{i+1, . . . , k+1}| =
k∑

i=1

i =
k(k + 1)

2
.

Now consider states p1, . . . , pk. The state p` is reachable on the word b`. Finally,
0 is reachable since it is the initial state. Thus, the number of reachable states
is

(n− 1) · (k + 1)− k(k + 1)

2
+ k + 1 = n · (k + 1)− k(k + 1)

2
.

Now, we show that all reachable states are pairwise inequivalent. First, note
that 0 can be distinguished from any other state by the word ε and that as a final
state of A, 0 is not a state of the form (i, j) in A′. Next, we distinguish states of
the form (i, j) from states of the form p` via the word akbn−i. From state (i, j),
reading ak takes the machine to state (i,min{ϕAn(i), k + 1}). Subsequently
reading bn−i takes the machine to the final state 0. However, for every state
p`, reading ak forces the machine beyond state pk, after which there are no
transitions defined.

9

Next, without loss of generality, we let ` < `′ and consider states p` and p`′ .
From above, the state p` can be reached by a word b` and p`′ is reached by a
word b`

′
. Choose z = ak−`. The string z takes state p` to the state pk, where it

is accepted. However, the computation on string z from state p`′ is undefined
since `′ + k − ` > k.

Finally, we consider states of the form (i, j). Let i < i′ and consider states
(i, j) and (i′, j′). Let z = bn−i+k. From state (i, j), the word z goes to state
0 on bn−i. Then by reading bk from state 0, we reach state pk, an accepting
state. However, when reading z from state (i′, j′), we reach state 0 on bn−i

′
,

since i′ > i. We are then left with bi
′−i+k. Reading bk takes us to state pk,

where we still have bi
′−i to read and no further defined transitions. Thus, the

computation is rejected.
Next, we fix i and let j < j′. First, consider the case when ϕAn(i) > k.

Then let z = ak−j . Reading z from (i, j) takes us to state (i, k), which is a final
state. However, from (i, j′), reading z brings us to state (i, k + 1) and so the
computation is rejected.

Now, consider the case when ϕAn
(i) ≤ k. Let z = cn−2a

k−j−1. From state
(i, j), reading cn−2 takes the machine to state pj+1 and reading ak−j−1 puts
the machine in the accepting state pk. However, reading z from (i, j′) takes us
to state pk with aj

′−j still unread since j′ + k − j − 1 > k and thus, with no
further transitions available, the computation is rejected.

Thus, we have shown that there are n · (k+ 1)− k(k+1)
2 reachable states and

that all reachable states are pairwise inequivalent.

Taking Proposition 2 together with Lemma 3, we get the following theorem.

Theorem 4. For n > k ≥ 0, if sc(L) = n then

sc(E(L, dp, k)) ≤ n · (k + 1)− k(k + 1)

2

and this bound can be reached in the worst case.

The proof of Lemma 3 uses an alphabet of size n−1. To conclude this section
we observe that the general upper bound cannot be reached by languages defined
over an alphabet of size less than n− 1.

Proposition 5. Let A be a DFA with n states. If the state complexity of

E(L(A), dp, k) equals n · (k + 1)− k(k+1)
2 , then the alphabet of A needs at least

n− 1 letters.

Proof. Let A = (Q,Σ, δ, q0, F) with |Q| = n. Let A′ = (Q′,Σ, δ′, q′0, F
′) be the

DFA recognizing E(L(A), dp, k) constructed in the proof of Proposition 2. In
the analysis at the end of the proof it was observed that in order for A′ to have

the maximal number of states n ·(k+1)− k(k+1)
2 , a necessary condition is that F

is a singleton set, F = {qf} and there can be only one state q1 with ϕA(q1) = 1
(that is, q1 is a non-final state with a direct transition to qf).

Now for all r ∈ Q − {qf , q1}, ϕA(r) ≥ 2. Based on the definition of the
transitions of δ′, if ϕA(r) ≥ 2 the state (r, 1) can be reached only by a (direct)

10

transition from a final state, that is, from qf . Thus, in the DFA A the state
qf must have at least n − 2 outgoing transitions. Furthermore, on some input
symbol the transition from qf must be undefined in order for the error state
p1 to be reachable in A′. (As defined in a construction of A′ in the proof of
Proposition 2, p1 can be reached only by a direct transition from a final state.)

Since A is a DFA, qf has at least n− 2 outgoing transitions and at least one
undefined transition, the cardinality of the alphabet must be at least n− 1.

4. Nondeterministic State Complexity

We consider the nondeterministic state complexity of neighbourhoods of
a regular language with respect to the prefix-, the suffix- and the substring
distance, respectively.

4.1. Prefix and Suffix Distance

We consider first neighbourhoods with respect to the prefix distance, and
the results for the suffix distance are obtained as a consequence of the fact that
the nondeterministic state complexity of a regular language L is the same as the
nondeterministic state complexity of the reversal of L and using the observation
ds(x, y) = dp(xR, yR) for all strings x and y.

We give an upper bound for the nondeterministic state complexity of the
neighbourhood of radius k with respect to the prefix distance dp and give a
matching lower bound construction.

Proposition 6. Let k ≥ 0 and L be a regular language recognized by an NFA
with n states. Then there is an NFA recognizing E(L, dp, k) with at most n+ k
states.

Proof. Let A = (Q,Σ, δ, Q0, F) be the NFA recognizing L. We define an NFA
A′ = (Q′,Σ, δ′, I, F) for the language E(L, dp, k) by

• Q′ = Q ∪ {p1, . . . , pk}, I = Q0,

• F ′ = F ∪ {p1, . . . , pk} ∪ {q ∈ Q | ϕA(q) ≤ k}.

The state set Q′ consists of all the original states in Q and k new states pi,
1 ≤ i ≤ k. Recall from (1) that each state q ∈ Q has an associated value ϕA(q)
which denotes the length of the shortest string that takes q to a final state in F .
Thus, for any word u ∈ Σ∗ that reaches a state q ∈ Q, there is a word v ∈ Σ∗

of length ϕA(q) such that uv ∈ L(A). States pi, 1 ≤ i ≤ k, are reached on a
transition on any symbol from a state q ∈ Q with ϕA(q) = i − 1 or from pi−1.
We will show later that if a word w ∈ Σ∗ has a computation that ends in a state
pi then dp(w,L(A)) = i.

The transition function is defined for all a ∈ Σ by

• δ′(q, a) = δ(q, a) ∪ {p1} for all q ∈ F ,

11

• δ′(q, a) = δ(q, a) ∪ {pϕA(q)+1} for all q ∈ Q with ϕA(q) < k,

• δ′(pi, a) = pi+1 for i = 1, . . . , k − 1.

The transitions of A′ are the same as those of A with the addition of transitions
to states pi, 1 ≤ i ≤ k. For each state q ∈ Q, we add transitions on every
symbol a ∈ Σ to the state pϕA(q)+1 if ϕA(q) ≤ k.

We now show that a word w ∈ Σ∗ is recognized by A′ if and only if w is in
the neighbourhood E(L(A), dp, k). Let x ∈ L be a closest string to w according
to the prefix distance dp. There are three cases to consider.

First, suppose that x = wx′ for some x′ ∈ Σ∗. Then w ∈ E(L, dp, k) if
and only if |x′| ≤ k. The computation of w ends in a state q. By definition,
q is a final state if and only if ϕA(q) ≤ k. Since x is a closest string to w in
L, the shortest path from q to a final state of A must be of length |x′|. Thus,
ϕA(q) = |x′| and q is a final state if and only if |x′| ≤ k.

Next, suppose that w = xw′ for some w′ ∈ Σ∗. Then w ∈ E(L, dp, k) if and
only if |w′| ≤ k. In this case, during the computation of w, a final state f will be
reached once x has been read. If |w′| ≤ k, then there is at least one computation
path which reaches p|w′| when reading w′ from f . If |w′| > k then there are
no accepting computations. Otherwise, an accepting computation must reach
another state q with ϕA(q) ≤ k and x would no longer be a closest word to w.
Thus, A′ recognizes w if and only if |w′| ≤ k.

Finally, suppose that w = pw′ and x = px′ with p, w′, x′ ∈ Σ∗. Then
w ∈ E(L, dp, k) if and only if |w′|+ |x′| ≤ k. The NFA A′ begins reading w until
it reaches a state q once it reads the prefix p. Since x is a closest string to w in
L, there must exist a shortest path of length |x′| from q to a final state of A.
Thus, ϕA(q) = |x′|. If |x′| > k, then w 6∈ E(L, dp, k). Thus, ϕA(q) = |x′| ≤ k
and there exists a computation of w′ which transitions to state p|x′|+1 and ends
in state p|w′|+|x′| if |w′| ≤ k−|x′|. Now, if |w′| > k−|x′|, there are no accepting
computations. Otherwise, an accepting computation would reach another state
q with ϕA(q) ≤ |x′|+ |w′| and x would no longer be a closest word to w. Thus,
A′ accepts w if and only if |w′| < k − ϕA(q) = k − |x′|.

Using the fooling sets of Proposition 1 we get a matching lower bound.

Lemma 7. For n, k ∈ N, there exists a DFA A with n states over Σ = {a, b}
such that any NFA for E(L(A), dp, k) requires n+ k states.

Proof. Let L = (an)∗ and let A be a DFA recognizing L with n states. We give
a fooling set of size n+ k for E(L(A), dp, k). We define S ⊆ Σ∗ ×Σ∗ to consist
of the following pairs of strings

1. (anbi, bk−i), for 1 ≤ i ≤ k,

2. (ai, an−ibk), for 1 ≤ i ≤ n.

Let i < j and consider two pairs (Xi, Yi) = (anbi, bk−i) and (Xj , Yj) = (anbj , bk−j).
Then Xj · Yi is not in E(L, dp, k) since dp(Xj · Yi, L) = |bk−i+j | > k. Now
let (Xi, Yi) = (ai, an−ibk) and (Xj , Yj) = (aj , an−jbk). Then Xj · Yi is not

12

in E(L, dp, k) since dp(Xj · Yi, L) = |aj−ibk| > k. Finally, let (Xi, Yi) =
(anbi, bk−i) and (Xj , Yj) = (aj , an−jbk). Then Xi · Yj is not in E(L, dp, k)
since dp(Xi · Yj , L) = |bian−jbk| > k.

Lemma 7 uses a binary alphabet. The same lower bound could be reached
also by a finite language over a unary alphabet. However, if using a unary
alphabet it seems that the fooling set method is not straightforwardly applicable
and we would need to use an ad hoc proof for the lower bound.

Theorem 8. For a regular language L ⊆ Σ∗ recognized by an NFA with n states
and an integer k ≥ 0,

nsc(E(L, dp, k)) ≤ n+ k.

There exists a DFA A over a binary alphabet and with n states such that for all
k ≥ 0,

nsc(E(L(A), dp, k)) = n+ k.

We get the results for the suffix distance neighbourhoods as a corollary
of Theorem 8 and the observation that, for all strings x and y, ds(x, y) =
dp(xR, yR).

Corollary 9. Let k ≥ 0 and L be a regular language recognized by a DFA with
n states. Then there is an NFA recognizing E(L, ds, k) with at most n+k states.

Proof. To see this, we take the original n-state NFA A for L and construct
an NFA B for the language LR simply by reversing the transitions and inter-
changing the sets of start states and accepting states. The NFA B has n states.
We follow the construction from Proposition 6, which gives us an NFA A′ with
n + k states recognizing the neighbourhood E(LR, dp, k). Take the reverse of
A′, and we have an NFA A′′ with n + k states recognizing the neighbourhood
E(L, ds, k).

The following lemma is a symmetric variant of the lower bound construc-
tion for prefix distance neighbourhoods. As a consequence of Corollary 9 and
Lemma 10 we then get a tight bound for the nondeterministic state complexity
of suffix neighbourhoods.

Lemma 10. For n, k ∈ N, there exists a DFA A with n states over Σ = {a, b}
such that any NFA for E(L(A), ds, k) requires n+ k states.

Proof. Let L = (an)∗ and let A be a DFA recognizing L with n states. We give
a fooling set of size n+ k for E(L(A), ds, k). We define S ⊆ Σ∗ × Σ∗ to consist
of the following pairs of strings

1. (bi, bk−ian), for 1 ≤ i ≤ k,

2. (bkai, an−i), for 1 ≤ i ≤ n.

Note that S is just the reverse of the fooling set from the proof of Lemma 7 and
the result follows by symmetry.

13

Theorem 11. For a regular language L ⊆ Σ∗ recognized by an NFA with n
states and an integer k ≥ 0,

nsc(E(L, ds, k)) ≤ n+ k.

There exists a DFA A defined over a binary alphabet with n states such that for
all k ≥ 0,

nsc(E(L(A), ds, k)) = n+ k.

4.2. Substring Distance Neighbourhoods

A neighbourhood with respect to the substring distance can be recognized by
an NFA that, roughly speaking, consists of k+1 copies of the NFA A recognizing
the original language. Later we will show that the construction is optimal.

Lemma 12. If A is an n-state NFA and k ∈ N0, the neighbourhood E(L(A), df , k)
can be recognized by an NFA with (k + 1) · n+ 2k states.

Proof. Let A = (Q,Σ, δ, Q0, FA). We construct an ε-NFA B = (P,Σ, γ, P0, FB)
where

P = Q× {0, 1, . . . , k} ∪ {r0, . . . , rk−1, s1, . . . , sk},

the set of initial states is P0 = {r0}, and the set of final states is

FB = {(q, i) | q ∈ FA, 0 ≤ i ≤ k} ∪ {s1, . . . , sk}.

There are three types of states.

• States ri, 0 ≤ i ≤ k − 1, are reached in the first k steps of computation.
The state ri is reached by a prefix of length exactly i and has transitions
to states in the i through kth copies of Q.

• States (i, j) ∈ Q × {0, 1, . . . , k} are copies of the original state set Q. A
word u reaches (i, j) if there exists a word v such that i ∈ δ(Q0, v) and
ds(u, v) = j. States in Q × {j} are reached by states ri when i ≤ j and
“remember” the penalty j that may have been incurred at the beginning
of the computation.

• States si, 1 ≤ i ≤ k, are reached on a transition on any symbol from a
state (q, j) ∈ Q × {0, . . . , k} with i = ϕA(q) + j + 1. These states are
similar to the states pi from the construction of the NFA for the prefix
neighbourhood presented in the proof of Proposition 6. In this case, we
also have the addition of the penalty j that was incurred at the beginning
of the computation.

For defining the transitions of B, recall from (1) that for a state q ∈ Q of an
NFA A, the value ϕA(q) is the shortest length of a string w that reaches a final
state of A from the state q. The transition function γ : P × (Σ ∪ {ε}) → 2P is
defined by setting

14

(i) for b ∈ Σ, q ∈ Q, 0 ≤ j ≤ k,

γ((q, j), b) = {(p, j) | p ∈ δ(q, b)};

(ii) for 0 ≤ i ≤ k − 1,

γ(ri, ε) = {(q, i+m) | (∃w ∈ Σm, i+m ≤ k, q0 ∈ Q0) q ∈ δ(q0, w)};

(iii) for b ∈ Σ, γ(ri, b) = {ri+1} for 0 ≤ i ≤ k − 2, and,

γ(rk−1, b) = {(q, k) | q ∈ Q0};

(iv) for q ∈ Q, 0 ≤ j ≤ k, γ((q, j), ε) = sj+ϕA(q) if j + ϕA(q) ≤ k;

(v) for 1 ≤ i ≤ k − 1, γ(si, b) = si+1.

All transitions not listed above are undefined. Note that within a set of states
Q × {j}, 0 ≤ j ≤ k, the transitions on symbols of Σ directly simulate the
transitions of the original NFA A. Any symbol of Σ takes ri, 0 ≤ i ≤ k − 2
(respectively, sj , 1 ≤ j ≤ k− 1) to state ri+1 (respectively, sj+1). Additionally,
there is a transition on each b ∈ Σ from rk−1 to states (q, k) where q is directly
reachable from an initial state in the NFA A. Thus, a state ri, 0 ≤ i ≤ k − 1,
can be reached by any string of length exactly i and the state (q0, k) is reached
by all strings of length k. The ε-transitions take the states ri, 0 ≤ i ≤ k− 1, to
states in Q× {0, 1, . . . k} and the latter states to the states sj , 1 ≤ j ≤ k.

Consider w ∈ E(L(A), df , k) where w = u1zu2 and v1zv2 ∈ L(A), ui, vi, z ∈
Σ∗, i = 1, 2, and |u1|+ |v1|+ |u2|+ |v2| ≤ k. Let C0 be an accepting computation
of A on v1zv2, beginning in state q0 ∈ Q0, and having state q1 (respectively, q2)
after reading the prefix v1 (respectively, the prefix v1z).

Based on the computation C0 we construct an accepting computation Cw of
B on the input w. If u1 = v1 = ε, Cw begins in the state (q1, 0) (and in this
case q1 = q0 ∈ Q0). If u1 = ε using an ε-transition (ii) the computation Cw

takes the initial state r0 to state (q1, |v1|). If u1 6= ε and |u1| < k, beginning
in state r0 and Cw reads the prefix u1 and end in state r|u1|. Then using an
ε-transition (ii) Cw reaches the state state (q1, |u1|+ |v1|).

Beginning in state (q1, |u1| + |v1|) computation Cw reads the substring z
directly simulating in the first component the computation C0. Thus, after
prefix u1z the computation Cw is in state (q2, |u1|+ |v1|). Since A accepts the
suffix v2 when the computation begins in state q2, it follows that ϕA(q2) ≤ |v2|.
Thus according to rules (iv), the state (q2, |u1| + |v1|) has an ε-transition to
state s|u1|+|v1|+h where h ≤ |v2|. Since |u1|+ |v1|+ |u2|+ |v2| ≤ k, after reading
the suffix u2, the computation Cw ends in the accepting state s|u1|+|v1|+h+|u2|.

Conversely to verify that L(B) ⊆ E(L(A), df , k) assume that B has an
accepting computation Cw on string w. Let (q, j) be the first state in Q ×
{0, 1, . . . , k} that is reached in Cw after reading a prefix u of w. Since a state
ri, 0 ≤ i ≤ k − 1, is reached exactly by the strings of length i, it follows from
the definition of the ε-transitions (ii) and the transition on Σ from state rk
that the state q can be reached from an initial state of A with a string v where
|u|+ |v| = j.

15

Let z be the substring after u that is processed using transitions (i). Thus,
the computation reaches the end of the prefix uz in a state (q′, j), and let u′ be
the suffix of the input (that is, w = uzu′). By the definition of the ε-transitions
and the choice of the final states of B it follows that j + ϕA(q′) + u′ ≤ k and,
recalling j = |u|+ |v| it follows that w ∈ E(L(A), df , k).

The ε-NFA B has (k + 1) · n + 2k states. It follows that there exists an
equivalent ordinary NFA with the same number of states.

Lemma 13. There exists a DFA A with n states such that, for all k ≥ 0,

nsc(E(L(A), df , k)) ≥ (k + 1) · n+ 2k.

Proof. Choose Σ = {a, b} and L = (an)∗. The minimal incomplete DFA for L
has n states.

Next we construct a fooling set of cardinality (k+ 1) · n+ 2k for E(L, df , k)
assuming that k ≤ n and at the end of the proof we explain how the fooling set
can be modified to handle the case n < k.

Define

S1 = {(b`ai, an−ibk−`) | 0 ≤ i ≤ n− 1, 0 ≤ ` ≤ k},

S2 = {(anbj , bk−j) | 1 ≤ j ≤ k}, S3 = {(bj , bk−jan) | 1 ≤ j ≤ k}.

We note that |S1∪S2∪S3| = (k+1) ·n+2k and, by Proposition 1, it is sufficient
to show that the set S = S1 ∪ S2 ∪ S3 is a fooling set for L.

For every (x, y) ∈ S, x · y is of the form bianbj where i+ j = k. This means
that df (x · y, L) = df (x · y, an) = k. It remains to verify the second condition
in the definition of fooling sets holds for all two distinct elements of S.

First consider two distinct pairs in S1, (b`ai, an−ibk−`) and (b`
′
ai
′
, an−i

′
bk−`

′
)

where i 6= i′ or ` 6= `′. First assume that ` 6= `′ and, without loss of generality
` < `′. Now the string b`

′
ai
′ ·an−ibk−` has subword distance at least `′+k−` > k

to any string in L. The remaining possibility is then that ` = `′ and i < i′.
Now the string b`

′
ai
′ · an−ibk−` has subword distance min(i′ − i, n− i′ + i) + k

to the closest string in L (which is either an or a2n).
Next consider two distinct pairs in S2, (anbj , bk−j) and (anbj

′
, bk−j

′
), where

j < j′. The concatenation anbj
′ · bk−j has subword distance k + j′ − j > k to

L. The case where we have two distinct pairs in S3 is completely analogous.
Next consider (b`ai, an−ibk−`) ∈ S1 and (anbj , bk−j) ∈ S2. The string

anbj · an−ibk−` can be in E(L, df , k) only if the length of bj · an−ibk−` is at
most k, which, in particular, implies that j < ` since n − i cannot be zero (as
i ≤ n− 1). Now if j < `, the string b`ai · bk−j has distance at least `+ k− j > k
from a string in L.

The case where one of the pairs is in S1 and the other is in S3 is completely
analogous to the previous one.

As the last possibility consider (anbj , bk−j) ∈ S2 and (bi, bk−ian) ∈ S3, and
consider the concatenation w = anbj · bk−ian. Since j ≥ 1 the longest subwords
w shares with a word of L is either the prefix an or the suffix an and the subword

16

distance to L is n + j + k − i, and under our original assumption k ≤ n, this
means that the subword distance to L is greater than k.

In the proof we have used the assumption k ≤ n only in the last case. In the
case n < k, we can modify the definition of S2 and S3 by replacing there the
occurrences of a subword an with am·n where m ·n > k. After this modification,
in the last case, the string am·nbj · bk−iam·n is guaranteed to have subword
distance greater than k to L also in case n < k.

As a consequence of Lemmas 12 and 13 we have an exact bound for the non-
deterministic state complexity of neighbourhoods with respect to the substring
distance:

Theorem 14. If L has an NFA with n states and k ∈ N0,

nsc(E(L, df , k)) ≤ (k + 1) · n+ 2k.

For every n ∈ N there exists a DFA A over a binary alphabet and with n states
such that for all k ∈ N0, nsc(E(L(A), df , k)) = (k + 1) · n+ 2k.

5. Conclusion

We have given a tight bound for the deterministic state complexity of neigh-
bourhoods with respect to the prefix distance and tight bounds for the nonde-
terministic state complexity of the prefix, suffix and substring distance neigh-
bourhoods.

Due to the fact that the reversal of a regular language L can be recognized
by an NFA having the same size as an NFA for L, the bounds for the nondeter-
ministic state complexity of suffix neighbourhoods were obtained as a corollary
of the corresponding bounds for prefix neighbourhoods. The situation is essen-
tially different for DFAs since, for a DFA A with n states, the incomplete DFA
recognizing L(A)R needs in the worst case 2n − 1 states. It seems likely that
constructing a DFA for the neighbourhood of an n-state DFA with respect to
the suffix distance causes a much larger worst-case size blow-up than the bound
for prefix distance in Proposition 2. Obtaining tight bounds for the determin-
istic state complexity of neighbourhoods with respect to the suffix distance, or
the substring distance, remains an open problem.

[1] Apostolico, A.: Maximal Words in Sequence Comparisons Based on Subword
Composition. In: Elomaa, T. et al. (Eds.), Ukkonen Festschrift, Lect. Notes
Comput. Sci. 6060 (2010) 34–44

[2] Birget, J.C.: Intersection and union of regular languages and state complex-
ity. Information Processing Letters 43 (1992) 185–190

[3] Calude, C.S., Salomaa, K., Yu, S.: Additive Distances and Quasi-Distances
Between Words. Journal of Universal Computer Science 8(2) (2002) 141–152

[4] Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of
relations. Theoretical Computer Science 286(1) (2002) 117–138

17

[5] Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer Berlin Heidel-
berg (2009)

[6] Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state com-
plexity. arXiv:1509.03254v1 [cs.FL], Sept. 2015. To appear in Computer
Science Review.

[7] Holzer, M. Kutrib, M.: Descriptional and computational complexity of finite
automata — A survey. Inform. Comput. 209 (2011) 456–470.

[8] Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems.
Journal of Automata, Languages, and Combinatorics 9 (2004) 293–309

[9] Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm
for computing the edit distance of a regular language via input-altering trans-
ducers. CoRR abs/1406.1041 (2014)

[10] Konstantinidis, S.: Computing the edit distance of a regular language.
Information and Computation 205 (2007) 1307–1316

[11] Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized Prefix Distance
between Regular Languages. In: SOFSEM 2014: Theory and Practice of
Computer Science. Lect. Notes Comput. Sci. 8327 (2014), Springer, 419–430

[12] Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of
formal languages. Bulletin of the EATCS 111 (2013) 70–86.

[13] Lothaire, M.: Applied Combinatorics on Words, Ch. 1 Algorithms on
Words. Encyclopedia of Mathematics and It’s Applications 105, Cambridge
University Press, New York, 2005

[14] Ng, T., Rappaport, D., Salomaa, K.: Quasi-Distances and Weighted Fi-
nite Automata. In: Descriptional Complexity of Formal Systems, DCFS’15,
Waterloo, Ontario, June 25–27, 2015, Lect. Notes Comput. Sci. 9118 (2015)
209–219

[15] Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods
and approximate pattern matching. In: Developments in Language Theory,
DLT 2015, Liverpool, UK, July 27–30, Lect. Notes Comput. Sci. 9168 (2015)
389–400

[16] Povarov, G.: Descriptive Complexity of the Hamming Neighborhood of a
Regular Language. In: Language and Automata Theory and Applications.
(2007) 509–520

[17] Salomaa, K., Schofield, P.: State Complexity of Additive Weighted Finite
Automata. International Journal of Foundations of Computer Science 18(06)
(December 2007) 1407–1416

[18] Shallit, J.: A second course in formal languages and automata theory.
Cambridge University Press, Cambridge, MA (2009)

18

[19] Yu, S.: Regular languages. In Rozenberg, G., Salomaa, A., eds.: Handbook
of Formal Languages. Springer-Verlag, Berlin, Heidelberg (1997) 41–110

19

