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Abstract

Motivated by work on bio-operations on DNA strings, we consider an outfix-
guided insertion operation that can be viewed as a generalization of the overlap
assembly operation on strings studied previously. As the main result we con-
struct a finite language L such that the outfix-guided insertion closure of L is
non-regular. We consider also the closure properties of regular and (determinis-
tic) context-free languages under the outfix-guided insertion operation and de-
cision problems related to outfix-guided insertion. Deciding whether a language
recognized by a deterministic finite automaton is closed under outfix-guided in-
sertion can be done in polynomial time. The complexity of the corresponding
question for nondeterministic finite automata remains open.
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1. Introduction

Gene insertion and deletion are basic operations occurring in DNA recom-
bination in molecular biology. Recombination creates a new DNA strand by
cutting, substituting, inserting, deleting or combining other strands. Possible
errors in this process impair the function of genes. Errors in DNA recombination
cause mutation that plays a part in normal and abnormal biological processes
such as cancer, the immune system, protein synthesis and evolution [1]. Since
mutational damage may or may not be easily identifiable, researchers deliber-
ately generate mutations so that the structure and biological activity of genes
can be examined in detail. Site-directed mutagenesis is one of the most impor-
tant techniques in laboratory for generating mutations on specific sites of DNA
using PCR (polymerase chain reaction) based methods [2, 3]. For a site-directed
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insertion mutagenesis by PCR, the mutagenic primers are typically designed to
include the desired change, which could be base addition [4, 5]. This enzymatic
reaction occurs in the test tube with a DNA strand and predesigned primers in
which the DNA strand includes a target region, and a predesigned primer in-
cludes a complementary region of the target region. The complementary region
of primers leads it to hybridize the target DNA region and generate a desired
insertion on a specific site as a mutation. Fig. 1 illustrates the procedure of
site-directed insertion mutagenesis by PCR.

In formal language theory, the insertion of a string means adding a substring
to a given string and deletion of a string means removing a substring. The
insertions occurring in DNA strands are in some sense context-sensitive and
Kari and Thierrin [6] modeled such bio-operations using contextual insertions
and deletions [7, 8]. A finite set of insertion-deletion rules, together with a
finite set of axioms, can be viewed as a language generating device. Contextual
insertion-deletion systems in the study of molecular computing have been used
e.g. by Daley et al. [9], Enaganti et al. [10], Krassovitskiy et al. [11] and Takahara
and Yokomori [12]. Further theoretical studies on the computational power of
insertion-deletion systems were done e.g. by Margenstern et al. [13] and Paun
et al. [14]. Enaganti et al. [10] have studied related operations to model the
action of DNA polymeraze enzymes.

We formalize site-directed insertion mutagenesis by PCR and define a new
operation outfiz-guided insertion that partially inserts a string y into a string =
when two non-empty substrings of © match with an outfix of y, see Fig. 2 (b). We
will consider also variants where only a prefix or a suffix of y must match with a
non-empty substring of = at the position where the insertion occurs. The outfix-
guided insertion is an overlapping variant of the ordinary insertion operation,
analogously as the overlap assembly [15, 16, 17], cf. Fig. 2 (a), is a variant of
the ordinary string concatenation operation. An operation equivalent to overlap
assembly has been considered under the name chop of languages by Holzer et
al. [18]. Holzer and Jacobi [19] have given tight state complexity bounds for
a variant of the operation where the overlapping string always has length one.
Furthermore, Carausu and Paun [20] have considered another related operation
called short concatenation.

This paper investigates the language theoretic closure properties of outfix-
guided insertion and iterated outfix-guided insertion. Note that since outfix-
guided insertion, similarly as overlap assembly, is not associative, there are more
than one way to define the iteration of the operation. We consider a general
outfix-guided insertion closure of a language which is defined analogously as the
iterated overlap assembly by Enaganti et al. [16]. Iterated (overlap) assembly
is defined by Csuhaj-Varju et al. [15] in a different way, which we call right
one-sided iteration of an operation.

It is fairly easy to see that regular languages are closed under outfix-guided
insertion. Closure of regular languages under iterated outfix-guided insertion
turns out to be less obvious. It is well known that regular languages are
not closed under the iteration of the ordinary (non-overlapping) insertion op-
eration [21] and it is also fairly easy to establish that iterated prefix-guided
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Figure 1: An example of site-directed insertion mutagenesis by PCR. Given a DNA sequence
and four predesigned primers a, b, c and d, two primers a and b lead the DNA sequence to break
and extend into two products A and B under enzymatic reaction (Step 1). Two primers ¢
and d complementarily bind to desired insertion region according to the overlapping region
and extend into product C (Step 2). Then, the products A, B and C join together to create
recombinant DNA that include the desired insertion (Step 3).



u v w u w (Y

(a) Overlap assembly (b) Outfix-guided insertion

Figure 2: (a) If suffix v of z overlaps with prefix v of y, then the overlap assembly operation
appends suffix w of y to z. (b) If the outfix of y consisting of u and v matches the substring uv
of x, then the outfix-guided insertion operation inserts w between u and v in the string x.

(or suffix-guided) insertion does not preserve regularity. However, the known
counter-examples, nor their variants, do not work for iterated outfix-guided in-
sertion. Here using a more involved construction we show that there exists even
a finite language L such that the outfix-guided insertion closure of L is non-
regular. On the other hand, we show that the outfix-guided insertion closure of
a unary regular language is always regular.

It is well known that context-free languages are closed under ordinary (non-
iterated) insertion. We show that context-free languages are not closed under
outfix-guided insertion, nor under prefix-guided or suffix-guided insertion. The
outfix-guided insertion of a regular language into a context-free language (or
vice versa) is always context-free. Also we establish that a similar closure prop-
erty does not hold for the deterministic context-free and the regular languages.
Finally in section 6 we consider decision problems on whether a language is
closed under outfix-guided insertion (or og-closed). We give a polynomial time
algorithm to decide whether a language recognized by a deterministic finite au-
tomaton (DFA) is og-closed. We show that for a given context-free language L
the question of deciding whether or not L is og-closed is undecidable.

2. Preliminaries

We assume the reader to be familiar with the basics of formal languages,
in particular, with the classes of regular languages and (deterministic) context-
free languages [22, 23]. Here we briefly recall some definitions and in the next
section formally define the the main notion of outfix-guided insertion and the
corresponding iterated operations.

The symbol X stands always for a finite alphabet, X* (respectively, ¥T) is
the set of strings (respectively, non-empty strings) over ¥, |w| is the length of
a string w € ¥*, w’ is the reversal of w and ¢ is the empty string. When there
is no danger of confusion, a singleton language {w} can be denoted by w for
short. For i € N, ¥2% is the set of strings of length at least 1.



If w= a2y, z,y € ¥*, we say that x is a prefix of w and y is a suffix of w.
If w = ayz, x,y,z € ¥*, we say that (z,2) is an outfir of w. If additionally
x # ¢ and z # ¢, (x,2) is a non-trivial outfir of w. Sometimes (in particular,
when talking about the outfix-guided insertion operation) we refer to an outfix
(z,z) simply as a string xz (when it is known from the context what are the
components x and z).

Example 2.1. Let ¥ = {a,b,c} and w = abca. The non-trivial outfixes of w
are aa, aba, aca and abca. Note that all prefixes and suffixes of a string u are
outfixes of u but prefixes and suffixes are not, in general, non-trivial outfixes.
A string u is a non-trivial outfix of v if and only if |u| > 2.

To conclude this section we fix some basic notation on finite automata.

A nondeterministic finite automaton (NFA) is a tuple A = (X,Q, 6, qo, F)
where ¥ is the input alphabet, Q is the finite set of states, 6: Q x ¥ — 2 is the
multivalued transitions function, gy € @ is the initial state and F' C @ is the
set of final states. In the usual way ¢ is extended as a function Q x £* — 29
and the language accepted by A is L(A) = {w € X* | §(qo, w) N F # (}. The
automaton A is a deterministic finite automaton (DFA) if ¢ is a single valued
partial function.

It is well known that the deterministic and nondeterministic finite automata
recognize the class of regular languages. A (nondeterministic) pushdown au-
tomaton (PDA) is an extension of a finite automaton that reads the input left-
to-right and in addition to the finite state memory has access to a pushdown
store [22]. The nondeterministic PDAs define the class of context-free languages
(CFL). Deterministic PDAs define the class of deterministic context-free lan-
guages (DCFL) and this is a proper subclass of CFL [22].

3. Definition of (Iterated) Outfix-Guided Insertion

We begin by recalling some notions associated with the non-overlapping
insertion operation.! More details on variants of the insertion operation and
iterated insertion can be found in [21].

The non-overlapping insertion of a string y into a string x is defined as the

. 1 . . .
set of strings © < y = {z1yxs | © = z122}. The insertion operation is extended
nol

in the natural way for languages by setting L pd Ly = UIGLM’GL2 T Y.
Following Kari [21] we define the left-iterated insertion of Lo into Ly inductively
by setting

LIO(Ly, Ly) = Ly and LIYTY (L, Ly) = LIO(Ly, Ly) ¥ Lo, i > 0.

The left-iterated insertion closure of Lo into Ly is LI*(Ly,Ls) =
Uiz LI (Ly, Ly). It is well known that the iterated non-overlapping insertion
operation does not preserve regularity [21, 24].

1We use the term “non-overlapping” to make the distinction clear to outfix-guided insertion
which will be the main topic of this paper.



Example 3.1. Let ¥ = {a,b}. The left-iterated insertion closure of the string
ab into itself is non-regular because LI*(ab, ab) N a*b* = {a'b’ | i > 0}.

Next we define the main notion of this paper which can be viewed as a
generalization of the overlap assembly operation [15, 16]. The “inside part” of
a string y can be outfix-guided inserted into a string x if a non-trivial outfix
of y overlaps with a substring of x in a position where the insertion occurs.
This differs from contextual insertion (as defined in [6]) in the sense that y
must actually contain the outfix that is matched with a substring of z (and
additionally [6] specifies a set of contexts where an insertion can occur).

Definition 3.2. The outfix-guided insertion of a string y into a string x is
defined as

&y = {z1uzves | & = B1UVTY, Y = uZV, U £ 0 £ e}

Using the above notations, when zjuzvzrs € x & y we say that the non-
empty substrings u and v are the matched parts. Note that the matched parts
form a non-trivial outfix of the inserted string y. When speaking of matched
parts we refer to specific substring occurrences in the string x that are matched
with a non-empty prefix and suffix of y, respectively.

As variants of outfix-guided insertion we define operations where only a non-
empty prefix or a non-empty suffix of the inserted string needs to be matched
with a substring in the original string.

Definition 3.3. The prefix-guided insertion of a string y into a string x is
defined as

x ¥ Y= {$1y1y2$2 | T =T1Y1%2, Y = Y1Y2, Y1 F 5}*

The suffix-guided insertion of a string y into a string x is defined as

v &y = {z1y1y0m2 | T = 19272, Y = V1Y, Y2 # €}

The ordinary insertion, outfix-guided insertion and suffix-guided insertion
operations, respectively, are illustrated in Fig. 3.

Since we are mainly dealing with outfix-guided insertion, in the following
for notational simplicity we write just < in place of 4. Outfix-guided in-
sertion is extended in the usual way for languages by setting L; < Lo =
Uwie Liie1,2 W1 ¢ Wa. The prefix-guided and suffix-guided insertion operations

% and & are extended for languages in the same way.
It is known that the ordinary insertion operation is not associative and, not
surprisingly, neither are the outfix-, prefix- and suffix- guided variants.

Example 3.4. Outfiz-guided (respectively, prefiz-guided, suffiz-guided) inser-
tion operation is not associative.
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Figure 3: (a) Non-overlapping insertion of string y into string z. (b) If the outfix of y consisting
of u and v matches the substring uv of x, then the outfix-guided insertion operation inserts z
between u and v in the string z. (c) If the suffix of y consisting of v matches a substring of
xz, then the suffix-guided operation inserts the prefix z of y before an occurrence of v in x.

Let ¥ = {a,b,c,d}. Now abcd € (acd <+ abc) < abed but abe <+ abed = ).

Similarly we note that abc € (ab %= b) 2 abe but b 22 abe = 0 because b is
not a prefix of abc. By reversing all the strings we get an example that shows
that suffiz-guided insertion is mon-associative.

Since outfix-guided (prefix-guided, suffix-guided, respectively) insertion is
non-associative we define the (i + 1)st iterated operation, analogously as was
done with iterated overlap assembly [16], by inserting to a string of the ith
iteration another string of the ith iteration.

Definition 3.5. For a language L define inductively
OGIV(L) = L, and OGI“*Y (L) = OGIY (L) + OGIY (L), i>0.

The outfix-guided insertion closure of L is

OGI*(L) = [j OGIV(L).

=0

The prefix-guided insertion closure of L, PGI*(L), (respectively, suffix-
guided insertion closure of L, SGI*(L)) is defined as above by replacing +

everywhere with i (respectively, with pl ).

For talking about specific iterated outfix-guided insertions, we use the no-

tation x [:y; z to indicate that string z is in = + y, z,v,2 € ¥*. A sequence of

steps
" [y:ﬂ 2 [%] 2 [:g] o ] oy > 1,
is called a derivation of z,, from x.
When we want to specify the matched substrings, they are indicated by
underlining. If = zquvxs derives z by inserting uzv (where u and v are the
matched prefix and suffix, respectively,) this is denoted

[uy]
T1UVT2 = Z.



Also, sometimes underlining is done only in the inserted string if this makes it
clear what must be the matched substrings in the original string.

By a trivial derivation step we mean a derivation x [:w>] x where z is obtained
from itself by selecting the outfix to consist of the entire string . Every string
of length at least two can be obtained from itself using a trivial derivation step.
This means, in particular, that for any language L, L — (XU {e}) € OGI" (L).
The sets @Gﬂ(i)(L), 1 > 1, cannot contain strings of length less than two and,
consequently OGI? (L) € OGITV (L), for all i > 1.

Definition 3.5 iterates the outfix-guided insertion by inserting a string from
the ith iteration of the operation into another string in the ith iteration. Since
the operation is non-associative we can define iterated insertion in more than
one way. The right one-sided insertion of Lo into L; outfix-guided inserts a
string of Lo into L and the iteration of the operation inserts a string obtained
in the process into L;. The iterated left one-sided outfix-guided insertion is
defined symmetrically. In fact, when considering iterated ordinary insertion,
Kari [21] uses a definition that we call left one-sided iterated insertion (and the
operation was defined as LI"(Li, Ly) above). Csuhaj-Varju et al. [15] define
iterated overlap assembly using right one-sided iteration of the operation.

Definition 3.6. Let L; and L, be languages. The right one-sided iterated
insertion of Ly into Ly is defined inductively by setting ROGI? (L1, Ly) = Ly
and ROGIYV(Ly, Ly) = Ly + ROGIV(Ly, Ly), i > 0. The right one-sided
insertion closure of Lo into Ly is ROGI*(Lq, L) = ;2 ROGI® (L1, Lo).

The left one-sided iterated insertion of Lo into Ly is defined inductively by
setting LOGIY (Ly, Ly) = Ly and LOGI®TY(Ly, Ly) = LOGI®Y (Ly, Ly) < Lo,
i > 0. The left one-sided insertion closure of Ly into Ly is LOGI* (L4, Lo) =
U0 LOGIO Ly, Lo).

Note that, by definition, L € OGI" (L) but the definition of left/right one-
sided insertion of L into itself does not need to contain all strings of LN(XU{e}).

The one-sided iterated insertion closures are defined for two argument lan-
guages. Naturally it would be possible to extend also the definition of unre-
stricted iterated outfix-guided insertion for two arguments. Note that for any
language L, OGIM (L) = LOGIY(L, L) = ROGIV (L, L) = L + L.

On the other hand, the iterated version of unrestricted outfix-guided inser-
tion is considerably more general than the one-sided variants. For any language
L, ROGI*(L, L) and LOGI* (L, L) are always included in OGI*(L) and, in gen-
eral, the inclusions can be strict.

Example 3.7. Let ¥ = {a,b,c¢} and L; = {aacc}, Ly = {abc}. Now
ROGI* (L, Ls) = a™bc™. For example, by inserting abc into aacc derives aabcc:
aacc 28 o abee. (1)

A right one-sided iterated insertion of Lo into L; could then be continued, for

aabce . . . . .
example, as aacc L:?] aaabce. In this way right one-sided derivations can



generate all strings of aTbcT. Since all inserted strings must contain the symbol
b, the first matched part must always belong to at and the second matched
part must belong to ¢™. This means that ROGI* (L1, Ly) C atbct.

On the other hand, LOGI*(Ly, Ly) = {aabce, aacc}. In a left one-sided iter-
ated insertion of Ly into L1, the only non-trivial derivation step is (1).

By denoting L3 = L U Lo, it can be verified that

OGI*(L3) = ROGI* (L3, L3) = LOGI*(Ls, L3) = a™bc™ U a*a*c3c*.

The next example illustrates that unrestricted outfix-guided insertion clo-
sure of a language L’ can be larger than LOGI"(L’,L’). The language L used
in the proof of Theorem 4.6 in the next section gives an example where the
unrestricted insertion closure is larger than ROGI* (L, L) (as explained before
Proposition 4.13).

Example 3.8. Let ¥ = {a,b,c,d,e, f} and L' = {abce,bede,acdef}. We note

bede
that abce [éd abcde. Furthermore, it is easy to verify that by outfiz-guided
inserting strings of L' into L' U {abede} one cannot produce more strings and,
thus, LOGIL* (L', L") = L' U {abede}. On the other hand, we have

acde f labede] abedef € OGI?(L).

4. Outfix-Guided Insertion and Regular Languages

As can be expected, the family of regular languages is closed under the outfix-
guided (prefix-guided, suffix-guided, respectively) insertion operation. On the
other hand, the answer to the question whether regular languages are closed
under iterated outfix-guided insertion seems less clear. From Kari [21] we recall
that it is easy to construct examples that establish the non-closure of regular
languages under iterated non-overlapping insertion. Using variants of such ex-
amples we see that the prefix-guided (or suffix-guided) insertion closure of a
singleton language may be non-regular.

On the other hand, analogous straightforward counter-examples do not work
for the unrestricted outfix-guided insertion closure. Using a more involved con-
struction we establish that the outfix-guided insertion closure of a finite lan-
guage need not be regular. The non-closure of regular languages under right
one-sided insertion closure is established by a more straightforward construction
(Proposition 4.13).

We begin by showing that regular languages are closed under non-iterated
outfix-guided insertion. The proof is not surprising but we give an explicit con-
struction because, essentially, the same construction will be used to show in The-
orem 5.3 that the outfix-guided insertion of a regular (respectively, context-free)
language into a context-free (respectively, regular) language is always context-
free, and for the polynomial time algorithm to decide whether the language
recognized by a DFA is closed under outfix-guided insertion in section 6.

Lemma 4.1. If Ly and Ly are regular, then so is L1 < Lo.



Proof. Let L; be recognized by an NFA A = (%,Q,9,q, Fa) and Lo be
recognized by an NFA B = (X, P,v,po, Fp). Denote @ = {7 | ¢ € Q} and
P ={p|pe P}. Here QU P is disjoint with QU P and &, © are new symbols
not occurring in any of the sets.

For the language L; < Lo we construct an NFA C' = (3, R, w, rg, Fo) where

R=Qx (PUPU{& OHUQ x P,

Fo={(¢;p) | ¢ € Fa,pe Fe} U{(¢,9V) | g € Fa)},

ro = (qo, ), and for defininng the transitions of w let b be an arbitrary symbol
of ¥. We set

(i) fO(r q ;]6:2: w((g,®),0) ={(q', %) | ¢ €(q;0)} U{(d,p") | ¢ €d(q,b),p" €
Y(Po, 9
(i) for ¢ € Q, p € P: w((g,p),b) = {(¢"sp") | ¢" € d(q,b),p" € v(p,b)} U
{@p) v €evpb)}u{ld,r)I|d € ( b),p €v(p,b)},
(ili) for ¢ € Q, p € P: w((g,p),b) = {g.0) | p € v(p,0)} U{(¢,P) | ¢ €
6(q.b),p" € v(p,b)}, _
(iv) for ¢ € Q, p € P: w((¢,p),b) = {(¢",0') | ¢ € 3(¢,b),p" € v(p,b)} U Z,,

where
, _JU@9) d €dgb)} ifpe Fp,
) if p & Fp,

(v) for ¢ € Q: w((q,9),b) ={(¢',V) | ¢ €d(q,b)}.

All transitions not listed above are undefined.

We begin by verifying that L(A) < L(B) C L(C). Consider a string w =
x1uzvre where ziuvey € L(A) and uzv € L(B), u,v # . Roughly speaking,
C' uses the states of @ x {&} to process the prefix z1, the states of @ x P to
process the following substring u, the states of @ x P to process the substring
2, the states of @ x P to process the substring v, and the states of Q x {Q} to
process the suffix zo. Note that according to rules (ii), on states of @ x P the
NFA simulates A in the first component and B in the second component of the
states. According to rules (iii), on states of @ x P, the NFA C simulates only
B in the second component, and according to rules (iv), on states of @ x P the
NFA C simulates again both A and B (in the first and second component of the
state of C, respectively).

In more detail, consider an accepting computation compa (z1uvzs) of A on
x1uvzo that reaches state g,, (respectively, qu, ¢v, ¢z,) after reading the prefix
x1 (respectively, zqu, x1uv, T1uves). An accepting computation of C first reads
x1 using rules (i) and simulating the computation comp 4 (xjuvas) of A on the
prefix x1, thus ending in state (g, , ).

When reading the first symbol b; of u, again using a rule (i) the computation
of C goes to a state (¢/,p’) where ¢’ € 6(qs,,b1) and the second component
begins to simulate an accepting computation of B on uzv in a state p’ € y(po, b1).
The computation nondeterministically guesses when it sees the first symbol of
z, and using rules (ii) enters a state (qy,p’) where p’ is the state of B in an

10



accepting computation on uzv after reading the first symbol of z. If z = ¢, the
computation guesses when it sees the first symbol by of v and using the “third
option” in the rules (ii), C goes to a state (¢’,p’) where ¢’ € §(qu,b2) and p’ is
a state that can be reached by B after reading ubs.

The computation processes the substring z in a state of {g, } x P using rules
(iii) and simulating the computation of B in the second component. When the
computation guesses that it sees the first symbol by of v, using the “second
part” of the rules (iii) the NFA C goes to a state (¢/,p’) where ¢’ € §(qu,b2)
and p’ is a state that can be reached by B after reading the prefix uzbs. Then,
according to rules (iv), C simulates the computation comp 4 (z;uvzs) in the first
component of the state and B in the second component of the state. Always
when the second component is an element of Fp, according to rules (iv), the
computation may enter a state of the form (¢’,O) that indicates that it has
finished reading the substring uzv.

The remaining computation, using rules (v), simulates the computation
comp 4 (zjuvze) of A on the first component of the states. The choice of the
final states then guarantees that C' accepts in the state (¢g,, ). If o = £, then
the computation of C' ends in an accepting state (¢,,ps) where py € Fp is the
state at the end of the simulated computation of B on uzv.

For the converse inclusion we note that the definition of the transitions of w
guarantees that any computation of C' ending in an accepting state, must have
five parts Py, Pa, P3, Py and Ps, where P; uses states of ) x {&}, P> uses states
of Q@ x P, P; uses states of Q) x P, P, uses states of Q x P and P uses states of
Q x {Q}. The part P; may be empty if, according to rules (ii), the computation
jumps directly from a state of P; to a state of Py and the part P5; may be empty
if the computation P, ends in an accepting state of the form (q,p) (¢ € Fa,
pE FB)

Since states of P; and Ps; simulate only a computation of A, states of Ps
simulate only a computation of B and states of P, and P, simulate both a
computation of A and a computation of B, it is easy to verify that C' can have
accepting computations only on strings of L(A) « L(B). &

The result of Lemma 4.1 extends easily using induction:

Proposition 4.2. Suppose Ly and Ly are reqular languages. Then, for all i >
0, OGIV(Ly), ROGIV(Ly, Ly) and LOGIY (L, Ly) are regular.

A simplified variant of the proof of Lemma 4.1 allows us to show that the
prefix-guided (or suffix-guided) insertion of a regular language into a regular
language is regular. We leave the proof as an exercise.

Proposition 4.3. If L1 and Lo are reqular languages, then so are L, ge! Lo
and Ly P Ls.

Iterated prefix-guided or suffix-guided insertion does not preserve regularity.

Proposition 4.4. There exist singleton languages L1 and Lo such that
PGI*(L1) and SGI*(Ls2) are non-regular.

11



Proof. Choose L1 = aab. We claim that
PGT*(aab) Na*b* = {a't’) |2 <i < j+1}. 2)

To establish the inclusion from right to left we note that, for all i > 2, a’*1bi+2 ¢

a’b"1 % qab. Furthermore, into strings of the form a’b’ (i > 2) one can always
add exactly one b by inserting aab where prefix aa is matched with the last a’s
of a’b’.

Second we verify the inclusion from left to right in (2). Denote Z = {a‘b? |
2 < i< j+1}. We note that derivations of strings in PGI*(aab) belonging to
a*b* can use only strings in a*b* because if wy; € a*b* or wy & a*b* then any
string in w; %8 wy has an occurrence of b preceding an occurence of a. It is

clear that for uj,us € Z, all strings in (uy ® ug) N a*b* must be in Z. Note
that the matched prefix of us must contain at least one a and thus the insertion
adds to u; at least as many b’s as a’s.

Since the language Z is non-regular, (2) implies that PGI"(aab) is non-
regular.

A completely symmetric argument establishes that SGI* (abb) is non-regular.
|

It seems difficult to extend the proof of Lemma 4.1 for outfix-guided in-
sertion closure because on strings with iterated insertions, the computations on
corresponding prefix-suffix pairs can, in general, depend on each other and when
processing a part inserted in between, an NFA would need to keep track of such
pairs, as opposed to simply keep track of a set of states. On the other hand,
constructions as in the proof of Proposition 4.4 rely on the property that the
matched substrings are all either prefixes or all suffixes of the inserted strings
and this type of straightforward constructions do not yield a regular language
whose outfix-guided insertion closure is non-regular.

Next we show that regular languages, indeed, are not closed under iterated
outfix-guided insertion. For the construction we use the following technical
lemma.

Lemma 4.5. Let ¥ = {ay, a9, as3,b1,ba,b3} and define
Ly = {azaiazby, a2babibs, ayazasba, asbsbaby, azazaibs, aibibsby}.

Then Ll “— L1 = Ll.

Proof. The inclusion from right to left follows from the observation that any
string w of length at least two is a non-trivial outfix of itself and, consequently
w can be inserted into itself to produce w as a result.

For the converse inclusion we verify that for all z,y € Lq, if y # z, then
y cannot be outfix-guided inserted into x and x can be outfix-guided inserted
into itself only in the trivial way of using as matching parts a non-empty prefix
x1 and a non-empty suffix xo such that z;zo = x. The second claim is obvious
because each string of L; consists of 4 different symbols.

12



Consider now x,y € L1, x # y. For the sake of contradiction suppose that
w € x < y and that w is obtained by matching substrings u and v of x with
a prefix and a suffix of y, respectively. The substrings v and v cannot both
consist of symbols a;, 1 < ¢ < 3, because if z and y both contain more than one
symbol a;, they must end with symbols b;, and b;,, j1 # jo. Using a symmetric
argument we observe that u and v cannot both consist of symbols b;, 1 <7 < 3.

The remaining possibility is that the first matched part u consists of (one
or more) symbols a; and the second matched part v consists of (one or more)
symbol b;. For simplicity in the following discussion we assume that v begins
with b;. The definition of L is symmetric, and an analogous argument works
when the first symbol of v is by or bs.

Now wv must be a substring of . This means that the last symbol of «
can be ay if * = agajasby or aq if x = a1b1b3bs. Besides the string azaiasby
the only other string of L; where ay occurs before b is asbab1bs. The string
a2bab1bs cannot be inserted into x = azajasb; because the last symbol b3 would
be “outside” of x.

As the remaining case consider then the possibility = a1b1b3b3. The only
string of Ly — {«} where a; occurs before b; is azajazb; and again this cannot
be inserted into x because the first symbol a3z would be outside of xz. B

Theorem 4.6. There exists a finite language L such that OGI*(L) is non-
regular.

Proof. Let ¥ = {aj,a2,as,b1,bs,b3} and define L C (X U {$})* as
L = {$aza1b1b38, azaiasbi, asbabibs, arasasba, asbsbaby, asasaibs, a1bibsbs}.

Note that L — {Sasa1b1b3$} is equal to the language Ly from Lemma 4.5. Our
construction is based on an idea that the only way to produce new strings in
OGI*(L) is to insert into strings obtained from $asza;b1bs$ cyclically copies of
the strings of Ly. For ease of discussion we introduce names for the strings of
L12

Y1 = azaiasby, Yo = asbabibz, y3 = ajazazbs, ys = azbsbaby,

Ys = azazaibs, ye = aibibsbs.
For specifying the language OGI*(L) we define the finite set
Smiddle = {a1b1, arazb1, ayazbaby, a1azazbabi, ayazazbsbabi, ajazazaibzbaby }.
We claim that
OGI*(L) = {$as(a1azas) z(bsbaby)'b3$ | i > 0, 2 € Smiddie}- (3)
To establish the inclusion from right to left, we note that

$a3a1b1b3$ [ii] $a3a1a2b1b3$ [g] $a3a1agb2b1b3$ [g%} $a3a1a2a3bgblb3$ [%]

$a3a1a2a3b3b2b1b3$ [%g] $a3a1a2a3a1b3b2b1b3$ [gg] $a3a1a2a3a1b1b3b2b1b3$ = W1q.

13



The first five insertions generate the strings $a32zb3$, 2 € Smidqle, and the last
string wy again has “middle part” aga;b1b3. By cyclically outfix-guided inserting
the strings y1,...,ys into wy we get all strings $az(aiasasz)z(bsbabr)bs$, z €
Smiddle; and the string $az(ajasaz)?a;bi(bzbaby)?b3$. By simple induction it
follows that OGI*(L) contains the right side of (3).

To establish the converse inclusion, we verify that all strings obtained by
iterated outfix-guided insertion from strings of L must be obtained as above,
that is, all non-trivial derivations producing new strings must be as above.

Since $aza;b1b3$ is the only string in L containing symbols $ and they occur
as the first and the last symbol, it is clear that all strings in OGI*(L) containing
symbols $ must be in $2*$. A string of $X*$ cannot be outfix-guided inserted
to any string not containing symbols $ and a string of $X*$ can be outfix-guided
inserted into another string of $3*$ only using a trivial derivation step.

By Lemma 4.5 we know that strings of L; cannot be outfix-guided inserted
into other strings of L;.

We have verified that the set

Lgen = {$as(arazaz)'z(bsbaby)b3$ | i >0, z € Smiddie}

is included in OGI* (L) and strings of Lge, can be inserted into strings of Lgen
only in a trivial way. To complete the proof it remains to verify that inserting
strings of L into Lgen does not produce additional strings, that is, Lgen <= L1 C
Lgen.

It is impossible to insert asa;azb; into a string of Lge, using an outfix ob-
tained from az and a2b; because in strings of Lge, the symbols a3 and a do not
occur consecutively. The same applies to the other five strings yo,...,ys € L1:
we cannot insert y; into Lge, using an outfix where the prefix ends and the suffix
begins with a symbol of {a1,as, a3} (respectively, with a symbol of {b1,b2,b3}).

The other non-trivial possibilities are that we insert asaiasb; into a string
of Lgen using an outfix uv where u is either as or asa; and v = b;. The
choice u = a3, v = by is not possible because asb; is not a substring of
a string in Lgen. The insertion using outfix aszai1b; can be done only to
a string of the from $as(aiazas)®aiby(bsbeby)’b3$, i > 0 and it produces
$as(a1azaz)'aiazby (bbab1)b3$ € Lgen. Using symmetry of the definition of
L1, the argument for the other five strings of Ly is completely analogous.

This establishes (3) and the non-regularity of OGI*(L). B

We conjecture that the iterated outfix-guided insertion closure of a regular
language need not be even context-free. However, a construction of such a
language would seem to be considerably more complicated than the construction
used in the proof of Theorem 4.6.

Open problem 4.7. Find a regular (or a finite) language L such that OGI*(L)
s not context-free.

Contrasting the result of Theorem 4.6 we show that unary regular languages
are closed under iterated outfix-guided insertion. The construction is based on a
technical lemma which shows that, for unary languages, outfix-guided insertion
closure can be represented as a variant of the iterated overlap assembly [15, 16].
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Definition 4.8. Let z,y € ¥*. The 2-overlap catenation of x and vy, x@2y, is
defined as

Oy = {ze XV | Fu,w € %) (Fv € £2%) & = uv,y = vw, 2 = wvw}.

For L C ¥*, we define inductively 20C? (L) = L and 20C"**+Y(L) =
2®C(i)(L)622@(C(i)(L), i > 0. The 2-overlap catenation closure of L is
20C* (L) = 32, 20CY (L).

Due to commutativity of unary languages we get the following property
which will be crucial for establishing closure of unary regular languages under
outfix-guided insertion closure.

Lemma 4.9. If z,y € a* are unary strings, then x <y = :E62y.

Proof. Consider w € (z + y), that is, we can write w = zjuzvzy, where
T = xuvxe, y = uzv and u,v # €. Since concatenation of unary strings is
commutative, we have

w = r1xrouvz, where x = rizouv, Y = UvZ.

This establishes that w € 23°y.

Conversely, consider z € m@zy, that is, 2 = wvw where x = wv, y = vw
and |v| > 2. Write v = vjve where vi,v2 € LT, Now, again relying just on
commutativity of unary concatenation, z = uvywvy € z < y. B

Corollary 4.10. If L is a unary language then OGI*(L) = 20C*(L).

The 2-overlap closure of a regular language is always regular. The construc-
tion does not depend on a language being unary, so we state the result for regular
languages over an arbitrary alphabet. Csuhaj-Varju et al. [15] have shown that
iterated overlap assembly preserves regularity. The proof of Lemma 4.11 is in-
spired by Theorem 4 of [15] but does not follow from it because [15] defines
iteration of operations as right one-sided iteration and, furthermore, 2-overlap
catenation has an additional length restriction on the overlapping strings.

Lemma 4.11. The 2-overlap catenation closure of a reqular language is reqular.

Proof. Consider a regular language L recognized by an NFA A
(3,Q,6,q90,F). We construct for the language 20C*(L) an NFA B
(2,297, {qo},2F — {0}) where the transitions of v are defined below.

For ) # P C Q and b € X define

7(P7 b) = { (5(P7 b) - Xrem) U Yadd | Xrem g Fa (S(P, b) - Xrem 7£ ®7
Yadd g 5((]03 b) }

States of B are subsets of () and the transition relation is nondeterministic:
~(P,b) is a collection of subsets of Q.
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The computation of B simulates multiple computations of A. When reading
a symbol b € &, the NFA B can guess that this occurrence of b begins (one or
more) 2-overlap-catenated strings, and adds to the simulated computations the
corresponding states of §(qo,b). Always when a simulated computation reaches
a state of I, the NFA B can nondeterministically guess that b ends a string that
is 2-overlap concatenated with another string. This is done by the choice of the
set Xiem C F in the definition of . Note that the condition 6(P,b) — Xyom # 0
guarantees that at least one of the simulated computations that were originated
before reading b must remain alive: this enforces that the overlap with the new
computations indeed will be at least two.

It is clear that, by always choosing the sets X,om and Yaqq correctly, B
has a computation on an arbitrary string in w € 20C*(L(A)) that ends in a
state P C F, P # (0. The set P consists of final states of A that appear in
an accepting computation in all strings that in the representation of w as a 2-
overlap catenation of strings of L(A) are a suffix of w. Note that the construction
works also if w has length one: in this case w must be an element of L(A).

To verify the converse inclusion L(B) C 20C*(L(A)), we note that, in gen-
eral, some parts of computations of B need not simulate any iterated 2-overlap
concatenation of a set of strings of L(A). For example, if A accepts both zyz
and y where |y| > 2, on the string xyz the NFA B can begin a second compu-
tation Cy when reading the first symbol of y and this computation then may
end in a final state at the end of the substring y. However, the existence of the
superfluous computation Cy cannot lead to new illegal computations because
the transitions of v add new computations depending only on the input symbol
and not on the current state. (In the transitions of +, the sets Y,qq depend only
on the input symbol and the initial state of A.) Thus, the added superfluous
computations cannot cause B to accept strings not in 20C*(L(A)). W

By Corollary 4.10 and Lemma 4.11 we have shown that unary regular lan-
guages are closed under outfix-guided insertion closure, constrasting the result
of Theorem 4.6 for general regular languages.

Theorem 4.12. The outfiz-guided insertion closure of a unary regular language
18 always regular.

4.1. One-sided iterated outfiz-guided insertion

From Proposition 4.2 we recall that any one-sided finite iteration of outfix-
guided insertion preserves regularity. The left and right one-sided insertion
closures are restricted variants of the general outfix-guided insertion closure, so
Theorem 4.6 does not, at least not directly, imply the existence of regular lan-
guages L1 and Ls such that LOGI*(Lq, Ls) or ROGI* (L1, L) are non-regular.
Here we show that the one-sided outfix-guided insertion closures are not, in
general, regularity preserving. For the left-one one-sided outfix-guided insertion
closure the construction is similar to that used in the proof of Theorem 4.6.
However, this construction does not work for right one-sided closure because if
L is the language used in the proof of Theorem 4.6, then ROGI*(L, L) is the
finite language L U {$asaiazb1b3$}.
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Proposition 4.13. There exist finite languages Ly, Lo, L3 and Ly such that
ROGI* (L1, L) and LOGI*(L3, Ly) are non-reqular.

Proof. We consider first the right one-sided outfix-guided insertion closure.
Let ¥ ={$,a,b,¢,d} and choose Ly = {a$b}, L1 = {acdb, cabd}. Then

ROGI* (L, Ly) = {(ca)'$(bd)’ | i > 0} U {a(ca)'$(bd)’b | i > 0},

which is non-regular. Inserting a$b into cabd derives ca$bd and next, in a right
one-sided derivation, inserting the latter string into acdb derives aca$bdb. Con-
tinuing in this way we get a right one-sided derivation for all strings in the set
appearing on the right side of the equation.

The fact that ROGI* (L1, Ls) does not contain any additional strings follows
from the property of right one-sided iterated insertions: all strings that are
inserted into L; will have the marker $ and strings of L; cannot be inserted into
strings of L;. We leave to the reader the details of verifying that the inclusion
holds from left to right.

The construction of the languages L3 and L4 for the left one-sided outfix-
guided insertion closure is obtained by modifying the language in the proof of
Theorem 4.6. Let ¥ = {a1, az,as, by, ba, b3} and define Ly = {$asza1b:b3$} and

Ly = {azaiazby, a2babibs, ayazasbe, asbsbaby, azazaibs, aibibsby}.

Denote A ‘
Ls = {Saz(a1a2a3) 2(bsbab1)bs$ | i > 0, z € Smiddie }

where Spidale = {a1b1, a1a2b1, a1azbsbi, arasasbabi, aiazaszbsbaby, arasasaibsbaby}.
From the proof of Theorem 4.6 it follows that

LOGI* (L3, Ls) = Ls.

Note that the first part of the proof of Theorem 4.6 establishes that all strings
of Ly are obtained by left one-sided iterated insertion of L4 into $asaib;bs$.
Thus, Ls C LOGI*(L3, Ls). The proof of Theorem 4.6 also establishes that
OGI*(L3 U Ly) = L5 and directly by the definition of the iterated operations,
LOGI* (L3, Ly) C OGI*(L3 U Ly). ®

5. Outfix-Guided Insertion and Context-Free Languages

It is well known that the family of context-free languages is closed under
ordinary insertion. We show that context-free languages are not closed under
outfix-guided (or prefix-guided, suffix-guided, respectively) insertion. This con-
trasts also the corresponding result for regular languages from Lemma 4.1.

Theorem 5.1. There exists a context-free language L such that L < L is not
context-free.
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Proof. Let ¥ ={$,a,b,c}. By choosing
L={$a"$$c" | n>1} U{$a"$0"$ | n > 1}
we note that
(L« L)N$a™$b"$ct = {$a"$0"$c™ | n > 1}.

The claim follows since the intersection of a context-free language and a regular
language is always context-free [22]. B

The same language L as in the proof of Theorem 5.1 can be used to establish
that context-free languages are not closed under prefix-guided insertion and the
reversal of L can be used to establish non-closure under suffix-guided insertion.

Corollary 5.2. There exist context-free languages L1 and Lo such that Ly pel

Ly and Lo i—gi Lo are not context-free.

On the other hand, the outfix-guided insertion of a regular (respectively,
context-free) language into a context-free (respectively, regular) language is al-
ways context-free.

Theorem 5.3. If Ly is context-free and Lo is regular, then Ly <+ Lo and Lo
L1 are context-free.

Proof.  Suppose L; is recognized by a nondeterministic PDA M and Lo is
recognized by an NFA A. By combining the finite state transitions of M and
A as in the proof of Lemma 4.1, and simultaneously simulating the pushdown
stack of M we can construct a PDA M; for L1 + Lo. Always when M;
makes a transition simulating a transition of M, it makes a corresponding stack
operation. On the other hand, transitions of M; simulating only transitions of
A do not touch the stack. A PDA for Ly < L; is obtained by interchanging in
the construction of Lemma 4.1 the roles of M and A. B

The analogy of Theorem 5.3 does not hold for deterministic context-free
languages. Techniques for proving that a language is not deterministic context-
free are known already from [25].

Theorem 5.4. If Ly is deterministic context-free and Lo is regular, the lan-
guages Ly < Lo or Lo + Ly need not be deterministic context-free.

Proof. First we show that there exist a DCFL L; and a regular language Lo
such that L; < Lo is not deterministic context-free.

Let Ly = {cda'b'a? | i,j > 1} U {ca’t/a’ | i,j > 1} and La = {cda}. We
can outfix-guided insert cda in a non-trivial way only into words of the form
ca*b/ a?, which gives us

Ly + Ly =cd- ({a'b'a’ | i,j > 1} U{a't/a’ | i,7 > 1}).
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From [25], we have that L C (X —c¢)* is a DCFL if and only if ¢L is a DCFL and
that the language ({a’b’a’ | i,5 > 1} U {a‘b’a? | i,7 > 1}) is not deterministic.
Thus, L + L5 is not a DCFL.

Second, we show that there exist a regular language L3 and a DCFL L4 such
that L3 < L4 is not deterministic context-free.

Let Ly = (a*bac) + (aba*) and Ly = {Va’c | j > 1} U{a'b'a® |i > 1}. We
can insert words of the form b a’c in a non-trivial way only into words of the
form a’bac. This gives us the set {a‘b’a’c | i,j > 1}. Similarly, we can only
insert words of the form a’b’a? into words of the form aba?a’, resulting in the
set {a’b'a’ | i > 1,5 > 2}. Thus,

L3 < Ly ={a'Vadlc|i,j >1}u{a'b'a’ |i>1,7>2},

which is not deterministic context-free. B

Theorem 5.1 raises the question how complex languages can be obtained
from context-free languages using iterated outfix-guided insertion. Note that
if L1 and Lo are context-free, it is easy to verify that L; < Lo is at least
deterministic context-sensitive.

Proposition 5.5. If Ly and Ly are context-free then ROGI* (L1, L2) and
LOGI* (L1, La) are context-sensitive.

Proof. We consider only the right one-sided insertion closure — the proof for
left one-sided insertion closure is similar.

Below by a substring occurrence of w we mean a unique substring beginning
at a specified position in w. From the definition of right one-sided iterated
insertion it follows that w € ROGI*(Ly, Lo) if and only if there exists k > 1 and
a sequence of substring occurrences of w: 1,83, ...,S, where sp = w and s; is
always inside the substring occurrence s;+1,1=1,...,k — 1, and:

e We can write s; = xjuzvrs, where xiuvxrs € Ly, uzv € L.
o We can write s = aju/'2'v'z),, where zju'v'al € Ly, v'2'v = 51,
o ...

e We can write s, = z{u"2"v" 2y, where zfu"v"al) € Ly, u"2"v" = s,_4.

Furthermore, we can assume that |s;| < |s;+1], ¢ = 1,...,k — 1, because if this
is not the case, in the chain we can simply omit s;1;. Now, on input w, a
nondeterministic linear space Turing machine M can begin by guessing s; and
verifying that it has the required decomposition. In the (i+1)st stage M always
“remembers” (by markers on the tape) the previous string s;, then guesses the
substring s;11 (where s; is a substring of s;11) and verifies that the conditions
hold for s;41. At the end M accepts if s = w. Since the values |s;| form a
strictly increasing sequence, the process can be ended after at most |w| stages.
|

In the proof of Proposition 5.5 it is sufficient to know that the languages
L1 and Ly are context-sensitive, and as a consequence it follows that context-
sensitive languages are closed under one-sided outfix-guided insertion closure.
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Corollary 5.6. If L1 and Ly are context-sensitive then so are ROGI*(Lq, L)
and LOGI* (L17 LQ)

We conjecture that, for any context-free language L, OGI*(L) must be
context-sensitive. Constructing a linear bounded automaton for OGI*(L) is
more difficult than in the case of the right or left one-sided insertion closures,
because a direct simulation of a derivation of w € QOGI*(L) (i.e., simulation of
the iterated outfix-guided insertion steps producing w) would need to remember,
at a given time, an unbounded number of substrings of the input.

Also we do not know how to make the procedure in the proof of Proposi-
tion 5.5 deterministic and it remains open whether the one-sided outfix-guided
insertion closures of context-free languages are always deterministic context-
sensitive.

6. Deciding Closure under Outfix-Guided Insertion

In this section we consider the question whether a given language is closed
under outfix-guided insertion and show that this question is undecidable for
context-free languages.

We say that a language L is closed under outfix-guided insertion, or og-closed
for short, if outfix-guided inserting strings of L into L does not produce strings
outside of L, that is, (L + L) C L.

A natural algorithmic problem is then to decide for a given language L
whether or not L is og-closed. If L is regular, by Lemma 4.1, we can decide
whether or not L is og-closed. For a given DFA A, Lemma 4.1 yields only
an NFA for the language L(A) < L(A). In general, the NFA equivalence or
inclusion problem is PSPACE complete [23]. However, inclusion of an NFA
language in the language L(A) can be tested efficiently when A is deterministic.

Theorem 6.1. There is a polynomial time algorithm to decide whether for a
given DFA A the language L(A) is og-closed.

Proof. Asin the proof of Lemma 4.1 we construct an NFA B for the language
L(A) < L(A). The number of states of B is quadratic in the number of states
of A. Let A’ be the DFA obtained from A by interchanging the final states and
the non-final states. Now L(B) C L(A) if and only if L(B) N L(A4") = § and
intersection emptiness for NFAs can be tested in polynomial time. B

The method used in Theorem 6.1 does not yield an efficient algorithm if the
regular language L is specified by an NFA. The complexity of deciding og-closure
of a language accepted by an NFA remains open. On the other hand, using a
reduction from the Post Correspondence Problem it follows that the question
whether or not a context-free language is og-closed in undecidable.

Theorem 6.2. For a given context-free language L, the question whether or
not L is og-closed is undecidable.
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Proof. Recall that an instance of the Post Correspondence Problem (PCP) [22]
consists of two lists of strings ((u1,...,un), (V1,...,0p)), usv; € £*, 1 <4 <
n, and a solution of this instrance is a sequence of integers (i1,...,1), i; €
{1,...,n}, 5 =1,...,k, such that u;, ---u;, = v, ---v;,. It is well known that
deciding whether or not a PCP instance has a solution is undecidable [22].

Let Ipcp = ((ur,...,un), (V1,...,0n)), ujv; € {a,b}*, 1 < i < n be an
arbitrary instance of PCP. Choose ¥ = {a,b, f,¢,$, #} and define

Ly ={ ¢Sivia-iofuiull oullgHv v, v #hshs—1 18¢ |
T‘,SZ1,1Sim,jygn,lgxgr,1§y§8}7 and,

Ly ={ Sivio--i,#wHfHwHii,_1---ir$ |
we{a,b} i r>1,1<i,<n,1<z<r}

The languages Ly and Lo are context-free. (The language Lo can be generated
by a linear context-free grammar and L; is the concatenation of two linear
context-free languages.)

We define L = Ly U Ly and claim that the instance Ipcp has a solution if
and only if L is not og-closed. Below we prove both implications of the claim.

e “Ipcp has a solution implies L is not closed”: Suppose that (i1,...,i;) is a
solution for Ipcp. Now

w1 = ¢iqig .- imééuiufj;1 . ~uf§##vi1vi2 v, FiRi—1 - 18¢ € Ly (C L).
Also since (i1, . ..,1x) is solution we note that

Wy = $i1i2 s ik#uiuf;l s uﬁ#f#vilviz s 'Uik#ikik—l s i1$ € Lo (g L)

As illustrated in Fig. 4, the string ws can be (in a unique way) outfix-
guided inserted into the string w; and the resulting string is not in L
because no string of L contains both symbols ¢ and f.

’¢ |$i1i2 . -ik#uﬁuﬁ_l 000 uil #'Uil'vig . "Uik#ikik—l . "i1$ ¢ ‘ wy € Ll

/ / o\ \

‘$i1i2---ik#uRuR ~~uﬁ#|f|#vilvi2--~v¢k#ikik_1---i1$‘ wag € Lo

1k tk—1

’¢ |$21221k#uRuR u£#|f |#'U1‘17)i2 ""Uik#ikik—l Zl$|¢ ‘ € W1 < w2

1k tk—1

Figure 4: Only possible outfix-guided insertion of wg into wi.

e “Ipcp has no solution implies L is closed”: Recall that by a trivial outfix-

guided derivation step we mean a derivation step w @ w where w is
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obtained from itself by selecting the outfix to consist of a prefix and suffix
of w whose concatenation is equal to w.

Using the assumption that the instance Ipcp does not have a solution we
show that strings of L can be inserted into strings of L using only trivial
derivation steps which naturally then implies (L < L) C L.

Strings of Ly begin and end with the symbol ¢ and this symbol occurs
exactly two times in strings of L;. Thus, strings of L; can be outfix-
guided inserted into strings of Ly only using a trivial derivation step. For
the same reason (by replacing ¢ with $) strings of Ly can be inserted into
strings of Ly only using a trivial derivation step.

Strings of L; cannot be outfix-guided inserted into strings of Lo because
the former begin and end with the symbol ¢ and the latter do not contain
any occurrences of ¢. The remaining possibility we need to consider is
under what conditions strings of Lo can be outfix-guided inserted into
strings of L.

Consider
wy = ¢$2112 e Z'T#uguﬁ71 e U‘g##vjlv]é e Ujs#jsjs—l . j1$¢ c [/17

and, wo = $iria - - i, HwH# fH0 Hiri 118 € Lo,

and suppose we can write wy = x1uvTe, we = w2V, U,V F# €. Since w;
does not contain occurrences of the symbol f, in the decomposition of wy
the symbol f must be in the substring z. The string wy begins and ends
with $ which are then the first and last symbol of u and v, respectively
(and consequently x; = xo = ¢). Since the concatenation of u and v must
contain all four occurrences of # in w1, it follows that

u = $iyig--- i,.#uﬁuf_l . ~uf§# and v = #v;,vj, -V, FJsjs—1 - 1S
Now in the decomposition of wy the only possibility is that z = f, and
the strings w; and wo must be as illustrated in Fig. 5. From the defi-
nition of the language Lo it follows that r = s, i, = j,, © = 1,...,r.
and (uffulf' uf)® = v; vy, - v;,. Together these conditions mean that
(i1,...,1,) is a solution for the instance Ipcp, which contradicts our as-
sumption that the instance did not have a solution.

|
Note that in the proof of Theorem 6.2 the language L; is not deterministic

context-free. It remains open whether og-closure can be decided for determin-
istic context-free languages.
7. Conclusion

Analogously with the recent overlap assembly operation [15, 16], we have in-

troduced an overlapping insertion operation on strings and have studied closure
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C\Sivig - ipHultull o ulE Hoj v, 0 F G118 C | wr € Ly
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"

$iqig - -ir#uﬁuR 7/ I |#vj, 05, - v #dsfs—1- - 518 wy € Ly

G 1 i1

Figure 5: Decompositions of wi € L1 and wa € La.

and decision properties of the outfix-guided insertion operation. While closure
properties of non-iterated outfix-guided insertion are straightforward to estab-
lish, the questions become more involved for the outfix-guided insertion closure.
As the main result we have shown that the outfix-guided insertion closure of a
finite language need not be regular.

Much work remains to be done on outfix-guided insertion. One of the main
open questions is to determine upper bounds for the complexity of the outfix-
guided insertion closures of regular languages. Does there exist regular lan-
guages L such that the outfix-guided insertion closure of L is non-context-free?
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