
QDrill: Query-Based Distributed Consumable Analytics for Big Data

Shadi Khalifa, Patrick Martin

School of Computing

Queen’s University

Kingston, ON, Canada

khalifa, martin@cs.queensu.ca

Dan Rope, Mike McRoberts

IBM

Washington D.C., USA

drope, mtm@us.ibm.com

Craig Statchuk

IBM

Canada

craig.Statchuk@ca.ibm.com

Abstract— Consumable analytics attempt to address the

shortage of skilled data analysts in many organizations by

offering analytic functionality in a form more familiar to in-

house expertise. Providing consumable analytics for Big Data

faces three main challenges. The first challenge is making the

analytics algorithms run in a distributed fashion in order to

analyze Big Data in a timely manner. The second challenge is

providing an easy interface to allow in-house expertise to run

these algorithms in a distributed fashion while minimizing the

learning cycle and existing code rewrites. The third challenge is

running the analytics on data of different formats stored on

heterogeneous data stores.

In this paper, we address these challenges in the proposed

QDrill. We introduce the Analytics Adaptor extension for

Apache Drill, a schema-free SQL query engine for non-

relational storage. The Analytics Adaptor introduces the

Distributed Analytics Query Language for invoking data

mining algorithms from within the Drill standard SQL query

statements. The adaptor allows using any sequential single-

node data mining library (e.g. WEKA) and makes its

algorithms run in a distributed fashion without having to

rewrite them. We evaluate QDrill against Apache Mahout. The

evaluation shows that QDrill outperforms Mahout in

Updatable model training and scoring phase while almost

keeping the same performance for Non-Updatable model

training. QDrill is more scalable and offers an easier interface,

no storage overhead and the whole algorithms repository of

WEKA, with the ability to extend to use algorithms from other

data mining libraries.

Keywords- Big Data; Analytics; SQL; Data

Mining;Distributed;Apache Drill; WEKA;

I. INTRODUCTION

Big Data Analytics is a multidisciplinary mix of art and
science that extracts useful insights from Big Data, which is
data that arrives in huge volumes, at a rapid velocity, with no
obvious way of telling the veracity of it. Data that outgrown
the ability to be stored and processed by many of the
traditional systems [1]. Analytics offers organizations the
means to discover hidden patterns in such data and use these
patterns to predict the likelihood of future events. However,
organizations need to overcome a number of challenges to
reap the benefits of Analytics.

1 R: https://www.r-project.org/
2 WEKA: http://www.cs.waikato.ac.nz/ml/weka/
3 RapidMiner: https://rapidminer.com/
4 Mahout: https://mahout.apache.org/
5 Oryx: https://github.com/cloudera/oryx
6 H2O: http://0xdata.com/h2o-2/

The first challenge is enabling the distributed execution
of the existing “arsenal” of data mining algorithms. The
majority of existing data mining libraries (e.g. R1, WEKA2,
RapidMiner 3 , etc.) only support sequential single-node
execution of these algorithms. This makes these libraries
unsuitable for dealing with Big Data.

Scalable distributed data mining libraries like Apache
Mahout4, Cloudera Oryx5, Oxdata H2O6, MLlib7 [2] and
Deeplearning4j8 rewrite the data mining algorithms to run in
a distributed fashion on Hadoop [3] and Spark [4]. These
libraries are developed by searching the algorithms for parts
to be executed in parallel and rewriting them. This process is
complex, time consuming and the quality of the modified
algorithm depends entirely on the contributors’ expertise.
This makes these libraries hard to maintain and extend [5].

Another approach to distribute the data mining algorithms
while keeping the same familiar interface is to add support
for MapReduce [6] to the sequential single-node data mining
libraries to enhance their scalability. Distributed Weka Base9,
Distributed Weka Hadoop10 and Distributed Weka Spark11
[5] packages extend WEKA to access the Hadoop
Distributed File System (HDFS) [7], Hadoop and Spark,
respectively. RHadoop12 allows running R code on Hadoop
and access to HDFS. These extensions, however, leave it to
users to put the data into the right format, create the right
meta-data and write the MapReduce wrappers for the data
mining algorithms.

The second challenge is for organizations to acquire the
needed skill set to carry out the Analytics process. This is a
problem since Analytics is multidisciplinary. It is the
application of computer science, data storage, data mining
and machine learning, statistical analysis, artificial
intelligence and pattern recognition, visualization, operations
research, Business Intelligence (BI) and business and domain
knowledge to real-world data sources to bring understanding
and insights to data-oriented problem domains [8].

Consumable Analytics is one of the main trends to
address this challenge and overcome the Analytics skill gap
by making Analytics more adoptable. Consumable Analytics
refers to increasing the impact of the skills already existing in
the organization by producing tools that make analytics easier
to build, manage, and consume [9]. Consumable Analytics

7 MlLib: https://spark.apache.org/mllib/
8 Deeplearning4j: http://deeplearning4j.org/
9 DistributedWekaBase: http://goo.gl/wcJrCa
10 DistributedWekaHadoop: http://goo.gl/69lVLE
11 DistributedWekaSpark: http://goo.gl/sWngFD
12 RHadoop: https://goo.gl/CsZad3

https://www.r-project.org/
http://www.cs.waikato.ac.nz/ml/weka/
https://rapidminer.com/
https://mahout.apache.org/
https://github.com/cloudera/oryx
http://0xdata.com/h2o-2/
https://spark.apache.org/mllib/
http://deeplearning4j.org/
http://goo.gl/wcJrCa
http://goo.gl/69lVLE
http://goo.gl/sWngFD
https://goo.gl/CsZad3

can be in the form of using a familiar interface or
programming language. It can be in the form of simplifying
or hiding the distributed deployment, data access and
execution of the analytics jobs.

The third challenge is providing seamless data
integration, which involves joining data of different formats
(structured, semi-structured and unstructured) that can be
distributed across heterogeneous data stores (HDFS,
Relational Databases, NoSQL Databases, etc.). Most of the
existing libraries use an Extract-Transform-Load (ETL)
operation to extract the data from the different stores and
transform their format to an acceptable schema. This
approach is time consuming, requires defining a schema for
the data and requires having all data available beforehand.

Apache Drill13 is an open source implementation of the
proprietary Google Dremel [10] (publicly available as
Google BigQuery 14 service). Drill is a schema-free SQL
query engine for non-relational storage (HDFS, Hive,
MongoDB, etc.). It allows analyzing multi-structured and
nested data directly without any ETL using a schema-on-read
approach. It provides a JDBC/ODBC interface for querying
and joining data from different sources using standard SQL
statements. Drill thus makes use of the existing SQL skillsets
and BI tools within an organization. Drill implements
Massive Parallel Processing (MPP), nested data modelling
and columnar storage to improve retrieval efficiency for
interactive analytics scenarios.

In this work, we introduce QDrill which uses Apache
Drill to address the seamless data integration challenge
(Third challenge). QDrill then extends Drill by adding the
Analytics Adaptor to address the other two challenges. The
adaptor allows integrating any sequential single-node data
mining library into Drill and running its algorithms in a
distributed fashion from within the Drill SQL statements
(First challenge). The adaptor does not require any
modifications to the data mining algorithms. It uses the
library APIs to access the algorithms and run them in parallel.
The adaptor hides all data format transformations from users.
It also provides users with the Distributed Analytics Query
Language (DAQL), a familiar SQL interface to invoke the
data mining algorithms, eliminating the need to learn new
programming languages or learning the data mining library
APIs (Second challenge).

The rest of the paper is organized as follows: Section II
summarizes the related work presented in the existing
Analytics Query Languages. Following that, Apache Drill
architecture is summarized in section III. Our Analytics
Adaptor extension and the Distributed Analytics Query
Language are introduced in section IV. Section V illustrates
the evaluation of the proposed QDrill. Finally, section VI has
the conclusions and future work.

II. RELATED WORK

To many people working with data is synonymous to
querying databases using SQL. However with Big Data, data
does not only reside in relational databases. Analytics Query
Languages (AQLs) provide a unified SQL interface over the
different Big Data stores with a standard JDBC/ODBC

13 Drill: https://drill.apache.org/

interface to connect to the familiar BI tools. Some AQLs also
provide data mining capabilities.

From these solutions, the Data Mining Query Language
(DMQL) [11] attempts to establish a standard for data mining
query languages. The DAEDLUS Framework [12]
introduces the MO-DMQL that can be expressed using the
3W algebraic framework [13], which is similar to relational
algebra. Microsoft introduces the Data Mining Extension
(DMX) query language [14] in its SQL server to run in-
database analytics. Hivemall [15] extends HiveQL [16] with
a scalable data mining library. Hivemall allows models to be
created and used from within HiveQL statements. Hivemall
statements are then transformed to Hadoop batch jobs for
execution. Meo et al. [17] propose a specialized SQL
extension for only association rules mining. SQL-TS [18] is
another specialized SQL extension that is highly optimized
for complex time series queries and searching patterns in
sequence.

Looking at the existing AQL solutions, we find the
following shortcomings. Both DMQL and MO-DMQL are
theoretical with no implementations. They also do not discuss
distributed queries for handling Big Data. The language from
Meo et al. only supports modeling association rules and SQL-
TS only supports complex time series queries. The closest to
achieving a fully functioning AQL for Big Data Analytics are
DMX and Hivemall. They support different data models and
use SQL and HiveQL, respectively for data exploration and
preparation. However, they rewrite the data mining
algorithms to run in a distributed fashion, thus their supported
algorithms are still limited compared to other sequential
single-node data mining libraries.

There are also some SQL-on-Hadoop solutions that offer
basic querying functionalities on Hadoop, like filtering,
aggregation and selection, but have no data mining
capabilities. Among these solutions Apache Hive [16]
translates the user’s HiveQL queries to MapReduce batch
jobs. Google Dremel [10] (publicly available as Google
BigQuery service), Cloudera Impala 15 and Apache Drill13
provide interactive querying on Big Data. Spark SQL
(previously known as Shark) [19] uses in-memory
computations to further accelerate query processing.
Microsoft SCOPE [20] is a SQL-like language that creates
optimized query execution plans inspired by parallel
databases optimization techniques for Microsoft’s
MapReduce solutions Cosmos and Dryad [21].

III. APACHE DRILL

Apache Drill is an open source software with a very active
contributors list. Drill is designed to allow accessing and
joining data from heterogeneous non-relational data sources
while providing the familiar interface of relational data
stores. Drill uses the standard SQL syntax and JDBC/ODBC
interface to submit queries to the non-relational data stores.

Drill supports queries on self-describing data like JSON,
with the ability to flatten the nested data. It supports on-the-
fly schema discovery, which enables execution to begin
without knowing the structure of the data. Based on the data
description within the submitted query, Drill automatically

14 BigQuery: https://cloud.google.com/bigquery
15 Impala: https://goo.gl/po3rIk

https://drill.apache.org/
https://cloud.google.com/bigquery
https://goo.gl/po3rIk

compiles the query during the execution phase to create the
schema. As a result, Drill can handle schema-less data. This
removes the constraint of having an ETL process and
maintaining schemas before data can be analyzed.

Unlike other frameworks that translate queries to
MapReduce jobs, Drill uses the Massive Parallel Processing
(MPP) paradigm. The MPP paradigm splits the processing
and data IO across multiple nodes, dividing the job across
them. MPP nodes use a messaging interface to coordinate the
job execution. This paradigm allows parallel search,
processing and fetching of data.

Architecture-wise, Drill uses a multi-level processing
architecture. Leaf processes communicate with the storage
layer to optimize accessing the data in parallel. The leaf
processes pass partial results to the intermediate processes,
which perform parallel operations on the intermediate results.
Intermediate processes then pass the aggregated results to the
root process, which performs further aggregation and
provides the final results to the client application. Drill,
however, does not implement a dedicated root process.
Instead, any Drill node (aka Drillbit) can accept queries and
become the root process (aka Driving Drillbit), leading to a
better load balancing when multiple queries are submitted.

Each Drillbit has a Storage Adaptor to optimize and
provide access to the various data stores. The Storage
Adaptor works with Storage Plugins that transform the data
loaded from a data store to a unified internal data structure so
that data of different formats coming from different sources
can be joined and processed. In addition, Storage Plugins
inform the execution engine of any native capabilities to
speed up the processing, such as predicate pushdown. Drill
1.4 comes with the following Storage Plugins preinstalled16:
File System (CSV, JSON, Parquet, and Delimited Text),
HDFS, HBase, Hive, MongoDB, S3, RDMS (MySQL,
Oracle DB, MS SQL Server, and Postgres). The Storage
Adaptor can also include user defined storage plugins for the
other data stores.

16 Drill Storage: https://goo.gl/EFGTuo

Query execution-wise, when a Drill SQL query is
submitted to an application, the Drill JDBC/ODBC interface
is used to forward the query to a Drillbit that becomes the
Driving Drillbit and coordinates the execution. The Driving
Drillbit parses the query to a logical plan that describes the
work required to generate the query results and defines which
data sources and operations to apply. A cost-based optimizer
is then used to apply various types of rules to rearrange the
logical plan operators and functions to speed up the
execution. The cost-based optimizer generates a physical
plan that describes how to execute the query.

The physical plan is given to the Parallelizer which

creates the execution plan by splitting the physical plan into

multiple execution phases (fragments) that can be executed

in parallel. The Parallelizer first fragments the plan into major

fragments. A major fragment represents a phase of one or

more related operations. Each major fragment is then

parallelized into as many minor fragments as can be run at

the same time on the cluster. A minor fragment is a logical

unit of work that runs inside a thread. Drill schedules the

minor fragments on nodes with data locality. Otherwise, Drill

schedules them in a round-robin fashion on the available

Drillbits.

IV. QDRILL

Drill is powerful in terms of accessing and joining data
from heterogeneous sources, which is usually a cumbersome
task when done in data mining libraries. On the other hand,
Drill does not have any data mining capabilities. Developing
data mining algorithms for Drill is time consuming and so
would likely be limited to a handful of algorithms, nothing
compared to those available in the well-established data
mining libraries. The proposed QDrill with the Analytics
Adaptor solves these issues by using Drill to load and join
data from heterogeneous sources and using the pre-existing
data mining algorithms of well-established data mining
libraries to train and score data mining models.

Figure 1. QDrill structure.

https://goo.gl/EFGTuo

The proposed Analytics Adaptor works in an analogous
way as Drill’s Storage Adaptor. It optimizes and provides
access to various data mining libraries. The Analytics
Adaptor works with Analytics Plugins that transform the data
loaded by Drill to a data structure understandable by the data
mining libraries. This way, algorithms from more than one
library can be used together, leaving it to the Analytics
Adaptor to resolve the inter-library data format conversion.
In addition, the plugins invoke the APIs of the data mining
library to train and score data mining models. All these details
are hidden from users.

Back to the Consumable Analytics challenges, QDrill
addresses the first challenge of providing distributed
analytics by using the proposed Analytics Adaptor. It allows
using any sequential single-node data mining library (e.g.
WEKA) and make its algorithms run in a distributed fashion
without having to rewrite them.

QDrill addresses the second challenge of providing an
easy interface for in-house expertise to use by using the
proposed Distributed Analytics Query Language. It allows
invoking data mining algorithms from within the Drill
standard SQL query statements. This allows in-house
expertise to use the SQL language they are familiar with
while having QDrill do the distributed deployment, data
access and execution of the analytics jobs behind the scene.

For the third challenge of running the analytics on data of
different formats stored on heterogeneous data stores, QDrill
relies on Drill’s Storage Adapter. The Storage Adapter allows
accessing and joining data from heterogeneous sources and
putting them in a common format to be processed by the
analytics algorithms.

As a prototype, we extended Apache Drill 1.2 as outlined
above and created a plugin for the weka-dev-3.7.13 data
mining library in the Analytics Adapter in order to access the
WEKA data mining algorithms using DAQL. The plugin also
converts the data loaded by Drill to the ARFF format
accepted by WEKA. In addition, we created a Model Storage
Plugin that can store and load WEKA models from any data
store supported by Drill. The full system architecture is
illustrated in Fig. 1, showing the unmodified components of
Drill, the modified components and the newly added ones.

A. Model Training and Scoring

Data mining models can be split to two types according
to the data required to do the training. Non-Updateable
Models require the full dataset available beforehand to do the
training. Updatable Models are incremental models that can
be trained using one instance (record) at a time. QDrill’s
Analytics Adaptor uses two training approaches, one for each
model type.

 For Non-Updateable Models, Drill fetches the data in
parallel, sends all data to the Driving Drillbit where the
Analytics Adaptor trains the model on this single node.
This approach does not speed up the training process as
it is still being done on a single machine. However, it
speeds up the data loading process. The limitation of this
approach is that the dataset size is limited to the amount
of available memory on the Driving Drillbit since a Non-
Updatable Model will need to put all data in memory to
do the training.

 For Updatable Models, Drill fetches the data for the
Analytics Adaptor to process it in parallel. Each Drillbit
trains an intermediate model, which are then aggregated
at the Driving Drillbit to produce the final model. This
approach speeds up both data fetching and model
training as both operations are done in parallel on all of
the available Drillbits. This approach is also not limited
to the amount of available memory since only one record
needs to be in memory at a time

The Analytics Adaptor uses the proposed Model Storage

Plugin to store and distribute the trained model across all
Drillbits to be used later for parallel scoring. In the scoring
phase, the Model Storage Plugin on each Drillbit loads the
trained model and the Analytics Adaptor feeds the loaded
model with records from the data split available on that
Drillbit, one record at a time. It brings the model to where
data exists, unlike the traditional approach where data needs
to be imported to the library. This approach speeds up the
scoring process by distributing both data fetching and
scoring. It is also highly flexible as it facilitates scoring on
only a subset of the data and scoring records as they arrive,
which is very beneficial for real-time scoring scenarios.

B. Distributed Analytics Query Language (DAQL)

The standard SQL syntax supported by Drill is extended

in this work to provide the analytics functionality producing

the Distributed Analytics Query Language (DAQL). The

DAQL adds a number of keywords and User Defined

Functions (UDFs) to SQL.

Fig. 2 illustrates using the DAQL to train a WEKA model

in a distributed fashion using the proposed Analytics

Adaptor and the WEKA Analytics Plugin. The first SQL

statement changes the storage location to a writable location.

The second SQL statement tells the Drill Storage Adaptor to

use the introduced Model Storage Plugin to save the model

after training. The third SQL statement fetches the training

data from any Drill-support data store using the FROM

clause. The FROM clause can also have a join between two

heterogeneous data sources. The WHERE clause specifies any

conditions on the records to fetch. The SQL then uses the

new qdm_train_weka UDF to define the classifier

algorithm, set its arguments, specify the data columns to use

for training and specify the label column, respectively. A

question mark (?) can be used for the <algorithm> to

display a list of supported algorithms and for the <args> to

display a list of valid arguments for the selected algorithm.

Finally, the statement uses the new TRAIN MODEL clause

to save the trained model under <model name>.

SQL-1> USE dfs.tmp;

SQL-2> ALTER SESSION SET `store.format`='model';

SQL-3> TRAIN MODEL <model name> AS

 SELECT qdm_train_weka(‘<algorithm>',‘<args>',

 columns, label_column)

 FROM `<Data Source>`

 WHERE <conditions>;

Figure 2. Training a WEKA model using DAQL

Fig. 3 illustrates using DAQL to update an existing

updatable model with new training records. The first SQL

statement changes the storage location to a writable location.

The second SQL statement tells the Drill Storage Adaptor to

use the Model Storage Plugin. The third SQL statement

fetches the new training dataset using the FROM clause. The

new APPLYING keyword in the FROM clause tells Drill

to fetch the trained model file <old model name>. The

WHERE clause specifies any conditions on the records to

fetch. The SQL then uses the new qdm_update_weka

UDF to define the classifier algorithm, set its arguments,

specify the model to update, specify the data columns to use

for training and specify the label column, respectively.

Finally, it uses the TRAIN MODEL clause to save the new

trained model under <model name>.

SQL-1> USE dfs.tmp;

SQL-2> ALTER SESSION SET `store.format`='model';

SQL-3> TRAIN MODEL <model name> AS

 SELECT qdm_update_weka(‘<algorithm>',‘<args>',

 mymodel.columns[0], mydata.columns,

 mydata.label_column)

 FROM `<Data Source>` AS mydata

 APPLYING <old model name> AS mymodel

 WHERE <conditions>;

Figure 3. Updating an updatable WEKA model using DAQL

Fig. 4 illustrates using DAQL to score unlabeled data

using a trained model. The first SQL statement changes the

storage location to a writable location. The second SQL

statement tells the Drill Storage Adaptor to save the scored

records in CSV format. The third SQL statement fetches the

unlabeled data using the FROM clause. The APPLYING

keyword in the FROM clause tells Drill to fetch the trained

model file <model name>. The WHERE clause specifies

any conditions on the records to fetch. The SQL then uses

the new qdm_test_weka UDF to apply the trained model

on the unlabeled data. The UDF defines the classifier

algorithm, set its arguments, specify the model to use for

scoring and specify the data columns to use for scoring,

respectively. This UDF outputs a label for each record in the

unlabeled dataset. Finally, the SQL statement uses the

CREATE TABLE clause to save the records along with their

label in a new table <results>.

SQL-1> USE dfs.tmp;

SQL-2> ALTER SESSION SET `store.format`=csv';

SQL-3> CREATE TABLE <results> AS

 SELECT mydata.columns,

 qdm_test_weka(‘<algorithm>',‘<args>',

 mymodel.columns[0], mydata.columns)

 FROM `<Data Source>` AS mydata

 APPLYING <model name> AS mymodel

 WHERE <conditions>;

Figure 4. Scoring a trained WEKA model using DAQL

17 https://aws.amazon.com/ec2/instance-types/

The DAQL extends Drill’s standard SQL to add analytics

capabilities by supporting calls from within the SQL

statements to any supported data mining library. By

distributing the algorithms and handling data ETL, the

DAQL allows users to do analytics in a clear and scalable

way with less lines of code compared to scripting and

programming languages.

V. EVALUATION

We carried out a set of experiments with our prototype to

determine if QDrill offers a consumable analytics solution

for Big Data scenarios. The experiments look at the impact

of three important factors in Big Data scenarios on the

performance of QDrill, namely the volume of data, the

dimensionality of data and the horizontal scalability of the

approach. In all the experiments we compare the

performance of QDrill with that of Apache Mahout 0.11 on

Hadoop 2.0, whose algorithms are designed to be natively

distributed.

The Naïve Bayes algorithm is used throughout this

evaluation as it exists in both solutions. We compare two

cases for training within QDrill. The first case uses the

Updatable Naïve Bayes (QDrill U) where data fetching and

training are distributed. The second case uses the regular

Naïve Bayes (QDrill NU) where only data fetching is

distributed and training is done sequentially in mini-batches

on a single node. Scoring is the same for the two training

cases. We compare all results with Mahout Distributed

Naïve Bayes for Hadoop. Default configurations are used for

all systems and algorithms throughout the evaluation.

Evaluation is carried out in terms of execution time and

storage overhead. We checked the accuracy of the resulting

trained models for all three QDrill U, QDrill NU and Mahout

and they all had nearly the same accuracy.

Amazon EC2 T2.Large17 instances are used. They have

two cores (3.3GHz each), 8GB RAM, 8GB Swap space and

a 100GB Solid State Disk. Our cluster uses 10 of these nodes

providing 20 cores, 80GB of RAM and 700GB of distributed

HDFS storage space that is configured to have three replicas

per block.

A. Exp. 1: Data volume analysis

Experiment 1 evaluates QDrill’s performance, both in

training and scoring, as more records are thrown at it. In this

experiment, the number of columns per record is fixed to five

columns (all integer) and the number of labels is fixed to two

labels. Datasets of 100, 300, 600 and 1000 million records

are used. The average of three runs is presented in each case.

For both training and scoring, most of Mahout’s

processing time is spent on loading the data into the vector

format required for processing. This causes Mahout to have

an expensive storage overhead and a longer processing time.

Thus, for large datasets (100 million records plus) and small

number of columns (5 columns), QDrill outperforms Mahout

https://aws.amazon.com/ec2/instance-types/

both in training and scoring as illustrated in Fig. 5 and 6,

respectively.

QDrill processes the data as-is, leaving it to the Analytics

Plugins to do the data preparation on-the-fly as the data

loads. This on-the-fly in-memory data format preparation

saves time and eliminates QDrill storage overhead.

In the training phase (Fig. 5) and for the same number of

records, QDrill Updatable Model training (QDrill U)

consumes less time than QDrill Non-Updatable Model

training (QDrill NU). Unlike QDrill NU where all training is

done on a single node, QDrill U is fully parallelized where

each Drillbit trains a local model and then all models are

aggregated at the Driving Drillbit. From Fig. 5 we can see

that QDrill’s worst case performance presented by QDrill

NU is still better than that of Mahout because QDrill uses in-

memory data format conversion and processing, while

Mahout uses the disk. That has been said, WEKA only

supports a small handful of updatable models, making

QDrill NU the most common scenario which yields the same

performance as Mahout. We are currently investigating ways

for speeding up QDrill NU while achieving the same model

accuracy.
It worth mentioning here that we tried running Mahout

0.11 on Spark to include in this comparison. Even though,
the 100 million record dataset size is 5.27GB and we have
80GB of RAM and 80 GB of Swap space, Mahout on Spark
ran out of memory. This makes QDrill more suited for
scenarios where fast results are required while having
limited memory.

B. Exp. 2: Data dimensionality analysis

Experiment 2 evaluates QDrill’s performance, both in

training and scoring, as more columns are thrown at it. In

this experiment, the number of records is fixed to 100 million

records and the number of labels is fixed to two labels.

Datasets of 5, 15, 25, 50 and 100 columns (all integer) are

used.

For smaller numbers of columns Mahout outperforms

QDrill NU during the training phase, as illustrated in Fig. 7,

because a single node has to do all the training. However, as

the number of columns increases, the dataset size increases

along with Mahout’s data loading and preparation time. This

causes QDrill NU to perform better relative to Mahout as the

dataset size becomes larger. Furthermore, QDrill NU gets

the job done for any data size fitting in the existing storage

as it does not have any storage overheads. Mahout fails as

the data size increases (e.g the 36.51GB dataset of 100

million records with 100 columns per record) and there

becomes not enough disk space to store the vector format

required for processing.

The QDrill U training and QDrill scoring still vastly

outperforms Mahout, as illustrated in Fig. 8. For both these

operations, QDrill uses in-memory MPP to fetch and process

the data in parallel.

C. Exp. 3: Scalability analysis

Experiment 3 evaluates QDrill’s scalability, both in

training and scoring. In this experiment, the number of

records is fixed to 100 million records, the number of

columns is fixed to 25 columns (all integer) and the number

of labels is fixed to 2. Only the QDrill Updatable model

training (QDrill U) is included in this evaluation as the

QDrill Non-Updatable model training always runs on a

single node and thus will not scale significantly. Evaluation

is carried on 1, 2, 5 and 10 computing nodes. Each running

a Drillbit and a MapReduce client.

From Fig. 9, adding a second node can lead to a 200%

and 600% speed up for QDrill training and scoring,

respectively. Moving from 5 nodes to 10 nodes yields 200%

Figure 5. Effect of number of records on training

Figure 6. Effect of number of records on scoring

Figure 7. Effect of number of columns on training

Figure 8. Effect of number of columns on scoring

speed up for both QDrill training and scoring. This shows

how QDrill is flexible to scale to as many available nodes.

QDrill scoring shows better scalability than training. For

scoring, everything is done in parallel as the trained model

is distributed on all Drillbits and each Drillbit uses the model

to score the data split locally available on the node. For

training, adding more nodes creates more intermediate

models. This speeds up the training as the data is split among

a larger number of models being trained in parallel.

However, this also slows down the models aggregation

process that is still executed on a single node.

Mahout scaling, on the other hand, becomes stagnant as

it reaches the default maximum configured number of

Mappers and Reducers. Thus adding more nodes does not

affect the execution time.

VI. CONCULSIONS AND FUTURE WORK

In this work, we present an approach based on SQL for

distributed analytics on Big Data. The proposed approach

addresses the three main challenges for providing Big Data

consumable analytics. Addressing the first challenge, QDrill

introduces the Analytics Adapter and Plugins enabling

distributed model training and scoring for any sequential

single-node data mining library without any algorithm

rewrites. Addressing the second challenge, QDrill introduces

the Distributed Analytics Query Language extension to Drill

SQL to provide an easy-to-use interface familiar to database

in-house experts so that they can run data mining algorithms

in a distributed fashion without learning any new

programming languages. Addressing the third challenge,

QDrill handles putting the data in the format required by the

data mining libraries and relies on Drill to access and join

data from heterogeneous sources.

The empirical studies show that we achieve better

performance than the natively distributed data mining

Mahout library. This validates our hypotheses that we can

achieve the same distributed performance without rewriting

the algorithms. Using the proposed approach that allows

reusing sequential single-node algorithms, we reduce the

development time of distributed data mining libraries, allow

access to more algorithms, provide an easier-to-use interface

and increase the scalability.

Distributing the Non-Updatable models training using

the proposed approach is still challenging and is the target of

our future work. Our future work also includes adding more

Analytics Plugins for popular libraries such as R and

experimenting with other classes of data mining problems

such as clustering.
The source code of the modified Apache Drill (QDrill)

including the Analytics Adaptor and WEKA plugin is
publicly available at https://svn.riouxsvn.com/qdrill/

ACKNOWLEDGMENT

This work is supported by IBM CAS research and
NSERC.

REFERENCES

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,

and A. Byers, “Big Data: The Next Frontier for Innovation,

Competition, and Productivity,” McKinsey Global Institute, 2011.

Retrieved February 3rd, 2016 from

http://bit.ly/McKinseyBigDataReport

[2] E. Sparks, A. Talwalkar, V. Smith, X. Pan, J. Gonzales, T. Kraska, M.

Jordan, and M. Franklin, “MLI: An API for Distributed Machine

Learning,” In Proc. of the 2013 IEEE 13th Int’l Conf. on Data Mining

(ICDM), 2013, pp.1187-1192.

[3] T. White, “Hadoop: The Definitive Guide (1st ed.),” O'Reilly Media,

Inc., 2009.

[4] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica,

“Spark: cluster computing with working sets,” In Proc. of the 2nd

USENIX Conf. on Hot topics in cloud computing (HotCloud'10),

2010.

[5] A. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, and J. Keane,

“A Parallel Distributed Weka Framework for Big Data Mining using

Spark,” In Proc. of 2015 IEEE International Congress on Big Data,

2015, pp.9-16.

[6] J. Dean and S. Ghemawat, “MapReduce: simplified data processing

on large clusters,” In Proc. of the 6th Conf. on Symposium on

Operating Systems Design & Implementation - Volume 6 (OSDI'04),

Vol. 6, 2004.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” In Proc. of the 2010 IEEE 26th Symposium

on Mass Storage Systems and Technologies (MSST '10), 2010, pp.1-

10.

[8] D. Turner, M. Schroeck, and R. Shockley, “Analytics: The real-world

use of big data in financial services,” IBM Institute for Business, and

Saïd Business School at the University of Oxford, 2012. Retrieved

February 3rd, 2016 from http://goo.gl/T6hD4k

[9] IBM, “IBM Global Technology Outlook 2012,” IBM, 2012. Retrieved

February 3rd, 2016 from http://goo.gl/63zjGl

[10] S. Melnik, A. Gubarev, J. Long, G. Romer, S. Shivakumar, M. Tolton,

and T. Vassilakis, “Dremel: interactive analysis of web-scale

datasets,” In Proc. VLDB Endow.3, 1-2, 2010, pp.330-339.

[11] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane, “DMQL: A data

mining query language for relational databases,” In Proc. of

SiGMOD’96, 1996, pp.27-34.

[12] R. Ortale, E. Ritacco, N. Pelekis, R. Trasarti, G. Costa, F. Giannotti,

G. Manco, C. Renso, and Y. Theodoridis, “The DAEDALUS

framework: progressive querying and mining of movement data,” In

Proc. of the 16th ACM SIGSPATIAL Int’l Conf. on Advances in

geographic information systems (GIS '08), Article 52, 2008, 4 pages.

[13] T. Johnson, L. Lakshmanan, and R. Ng, “The 3W Model and Algebra

for Unified Data Mining,” In Proc. of the 26th Int’l Conf. on Very

Large Data Bases (VLDB '00). 2000, pp.21-32.

[14] Z. Tang, J. Maclennan, and P. Kim, “Building data mining solutions

with OLE DB for DM and XML for analysis,” SIGMOD Rec. 34, 2,

2005, pp.80-85.

Figure 9. QDrill versus Mahout scaling

https://svn.riouxsvn.com/qdrill/
http://bit.ly/McKinseyBigDataReport
http://goo.gl/T6hD4k
http://goo.gl/63zjGl

[15] M. Yui and I. Kojima “A Database-Hadoop Hybrid Approach to

Scalable Machine Learning,” In Proc. of the 2013 IEEE Int’l Congress

on Big Data (BIGDATACONGRESS '13), 2013, pp.1-8.

[16] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a

map-reduce framework,” In Proc. VLDB Endow. 2, 2, 2009, pp.1626-

1629.

[17] R. Meo, G. Psaila, and S. Ceri, “A New SQL-like Operator for Mining

Association Rules,” In Proc. of the 22th Int’l Conf. on Very Large

Data Bases (VLDB '96), 1996, pp.122-133.

[18] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi, “A Sequential Pattern

Query Language for Supporting Instant Data Mining for e-Services,”

In Proc. of the 27th Int’l Conf. on Very Large Data Bases (VLDB '01),

2001, pp.653-656.

[19] R. Xin, J. Rosen, M. Zaharia, M. Franklin, S. Shenker, and I. Stoica,

“Shark: SQL and rich analytics at scale,” In Proc. of the 2013 ACM

SIGMOD Int’l Conf. on Management of Data (SIGMOD '13), 2013,

pp.13-24.

[20] J. Zhou, N. Bruno, M. Wu, P. Larson, R. Chaiken, and D. Shakib,

“SCOPE: parallel databases meet MapReduce,” The VLDB Journal

21, 0035, 2012, pp.611-636.

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,”

SIGOPS Oper. Syst. Rev. 41, 3 (March 2007), 2007, pp.59-72.

