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Abstract— Consumable analytics attempt to address the 

shortage of skilled data analysts in many organizations by 

offering analytic functionality in a form more familiar to in-

house expertise. Providing consumable analytics for Big Data 

faces three main challenges. The first challenge is making the 

analytics algorithms run in a distributed fashion in order to 

analyze Big Data in a timely manner. The second challenge is 

providing an easy interface to allow in-house expertise to run 

these algorithms in a distributed fashion while minimizing the 

learning cycle and existing code rewrites. The third challenge is 

running the analytics on data of different formats stored on 

heterogeneous data stores.  

In this paper, we address these challenges in the proposed 

QDrill. We introduce the Analytics Adaptor extension for 

Apache Drill, a schema-free SQL query engine for non-

relational storage. The Analytics Adaptor introduces the 

Distributed Analytics Query Language for invoking data 

mining algorithms from within the Drill standard SQL query 

statements. The adaptor allows using any sequential single-

node data mining library (e.g. WEKA) and makes its 

algorithms run in a distributed fashion without having to 

rewrite them. We evaluate QDrill against Apache Mahout. The 

evaluation shows that QDrill outperforms Mahout in 

Updatable model training and scoring phase while almost 

keeping the same performance for Non-Updatable model 

training. QDrill is more scalable and offers an easier interface, 

no storage overhead and the whole algorithms repository of 

WEKA, with the ability to extend to use algorithms from other 

data mining libraries. 

Keywords- Big Data; Analytics; SQL; Data 

Mining;Distributed;Apache Drill; WEKA; 

I.  INTRODUCTION 

Big Data Analytics is a multidisciplinary mix of art and 
science that extracts useful insights from Big Data, which is 
data that arrives in huge volumes, at a rapid velocity, with no 
obvious way of telling the veracity of it.  Data that outgrown 
the ability to be stored and processed by many of the 
traditional systems [1]. Analytics offers organizations the 
means to discover hidden patterns in such data and use these 
patterns to predict the likelihood of future events. However, 
organizations need to overcome a number of challenges to 
reap the benefits of Analytics. 

                                                           
1 R: https://www.r-project.org/ 
2 WEKA: http://www.cs.waikato.ac.nz/ml/weka/ 
3 RapidMiner: https://rapidminer.com/ 
4 Mahout: https://mahout.apache.org/ 
5 Oryx: https://github.com/cloudera/oryx 
6 H2O: http://0xdata.com/h2o-2/ 

The first challenge is enabling the distributed execution 
of the existing “arsenal” of data mining algorithms. The 
majority of existing data mining libraries (e.g. R1, WEKA2, 
RapidMiner 3 , etc.) only support sequential single-node 
execution of these algorithms. This makes these libraries 
unsuitable for dealing with Big Data. 

Scalable distributed data mining libraries like Apache 
Mahout4, Cloudera Oryx5, Oxdata H2O6, MLlib7  [2] and 
Deeplearning4j8 rewrite the data mining algorithms to run in 
a distributed fashion on Hadoop [3] and Spark [4]. These 
libraries are developed by searching the algorithms for parts 
to be executed in parallel and rewriting them. This process is 
complex, time consuming and the quality of the modified 
algorithm depends entirely on the contributors’ expertise. 
This makes these libraries hard to maintain and extend [5].  

Another approach to distribute the data mining algorithms 
while keeping the same familiar interface is to add support 
for MapReduce [6] to the sequential single-node data mining 
libraries to enhance their scalability. Distributed Weka Base9, 
Distributed Weka Hadoop10 and Distributed Weka Spark11 
[5] packages extend WEKA to access the Hadoop 
Distributed File System (HDFS) [7], Hadoop and Spark, 
respectively. RHadoop12 allows running R code on Hadoop 
and access to HDFS. These extensions, however, leave it to 
users to put the data into the right format, create the right 
meta-data and write the MapReduce wrappers for the data 
mining algorithms. 

The second challenge is for organizations to acquire the 
needed skill set to carry out the Analytics process. This is a 
problem since Analytics is multidisciplinary. It is the 
application of computer science, data storage, data mining 
and machine learning, statistical analysis, artificial 
intelligence and pattern recognition, visualization, operations 
research, Business Intelligence (BI) and business and domain 
knowledge to real-world data sources to bring understanding 
and insights to data-oriented problem domains [8].  

Consumable Analytics is one of the main trends to 
address this challenge and overcome the Analytics skill gap 
by making Analytics more adoptable. Consumable Analytics 
refers to increasing the impact of the skills already existing in 
the organization by producing tools that make analytics easier 
to build, manage, and consume [9]. Consumable Analytics 

7 MlLib: https://spark.apache.org/mllib/ 
8 Deeplearning4j: http://deeplearning4j.org/ 
9 DistributedWekaBase: http://goo.gl/wcJrCa 
10 DistributedWekaHadoop: http://goo.gl/69lVLE 
11 DistributedWekaSpark: http://goo.gl/sWngFD 
12 RHadoop: https://goo.gl/CsZad3 
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can be in the form of using a familiar interface or 
programming language. It can be in the form of simplifying 
or hiding the distributed deployment, data access and 
execution of the analytics jobs.   

The third challenge is providing seamless data 
integration, which involves joining data of different formats 
(structured, semi-structured and unstructured) that can be 
distributed across heterogeneous data stores (HDFS, 
Relational Databases, NoSQL Databases, etc.). Most of the 
existing libraries use an Extract-Transform-Load (ETL) 
operation to extract the data from the different stores and 
transform their format to an acceptable schema. This 
approach is time consuming, requires defining a schema for 
the data and requires having all data available beforehand. 

Apache Drill13 is an open source implementation of the 
proprietary Google Dremel [10] (publicly available as 
Google BigQuery 14  service). Drill is a schema-free SQL 
query engine for non-relational storage (HDFS, Hive, 
MongoDB, etc.). It allows analyzing multi-structured and 
nested data directly without any ETL using a schema-on-read 
approach. It provides a JDBC/ODBC interface for querying 
and joining data from different sources using standard SQL 
statements. Drill thus makes use of the existing SQL skillsets 
and BI tools within an organization. Drill implements 
Massive Parallel Processing (MPP), nested data modelling 
and columnar storage to improve retrieval efficiency for 
interactive analytics scenarios.  

In this work, we introduce QDrill which uses Apache 
Drill to address the seamless data integration challenge 
(Third challenge). QDrill then extends Drill by adding the 
Analytics Adaptor to address the other two challenges. The 
adaptor allows integrating any sequential single-node data 
mining library into Drill and running its algorithms in a 
distributed fashion from within the Drill SQL statements 
(First challenge). The adaptor does not require any 
modifications to the data mining algorithms. It uses the 
library APIs to access the algorithms and run them in parallel. 
The adaptor hides all data format transformations from users. 
It also provides users with the Distributed Analytics Query 
Language (DAQL), a familiar SQL interface to invoke the 
data mining algorithms, eliminating the need to learn new 
programming languages or learning the data mining library 
APIs (Second challenge). 

The rest of the paper is organized as follows: Section II 
summarizes the related work presented in the existing 
Analytics Query Languages. Following that, Apache Drill 
architecture is summarized in section III. Our Analytics 
Adaptor extension and the Distributed Analytics Query 
Language are introduced in section IV. Section V illustrates 
the evaluation of the proposed QDrill. Finally, section VI has 
the conclusions and future work. 

II. RELATED WORK 

To many people working with data is synonymous to 
querying databases using SQL. However with Big Data, data 
does not only reside in relational databases. Analytics Query 
Languages (AQLs) provide a unified SQL interface over the 
different Big Data stores with a standard JDBC/ODBC 
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interface to connect to the familiar BI tools. Some AQLs also 
provide data mining capabilities. 

From these solutions, the Data Mining Query Language 
(DMQL) [11] attempts to establish a standard for data mining 
query languages. The DAEDLUS Framework [12] 
introduces the MO-DMQL that can be expressed using the 
3W algebraic framework [13], which is similar to relational 
algebra. Microsoft introduces the Data Mining Extension 
(DMX) query language [14] in its SQL server to run in-
database analytics. Hivemall [15] extends HiveQL [16] with 
a scalable data mining library. Hivemall allows models to be 
created and used from within HiveQL statements. Hivemall 
statements are then transformed to Hadoop batch jobs for 
execution. Meo et al. [17] propose a specialized SQL 
extension for only association rules mining. SQL-TS [18] is 
another specialized SQL extension that is highly optimized 
for complex time series queries and searching patterns in 
sequence. 

Looking at the existing AQL solutions, we find the 
following shortcomings. Both DMQL and MO-DMQL are 
theoretical with no implementations. They also do not discuss 
distributed queries for handling Big Data. The language from 
Meo et al. only supports modeling association rules and SQL-
TS only supports complex time series queries. The closest to 
achieving a fully functioning AQL for Big Data Analytics are 
DMX and Hivemall. They support different data models and 
use SQL and HiveQL, respectively for data exploration and 
preparation. However, they rewrite the data mining 
algorithms to run in a distributed fashion, thus their supported 
algorithms are still limited compared to other sequential 
single-node data mining libraries. 

There are also some SQL-on-Hadoop solutions that offer 
basic querying functionalities on Hadoop, like filtering, 
aggregation and selection, but have no data mining 
capabilities. Among these solutions Apache Hive [16] 
translates the user’s HiveQL queries to MapReduce batch 
jobs.  Google Dremel [10] (publicly available as Google 
BigQuery service), Cloudera Impala 15  and Apache Drill13 
provide interactive querying on Big Data. Spark SQL 
(previously known as Shark) [19] uses in-memory 
computations to further accelerate query processing. 
Microsoft SCOPE [20] is a SQL-like language that creates 
optimized query execution plans inspired by parallel 
databases optimization techniques for Microsoft’s 
MapReduce solutions Cosmos and Dryad [21]. 

III. APACHE DRILL 

Apache Drill is an open source software with a very active 
contributors list. Drill is designed to allow accessing and 
joining data from heterogeneous non-relational data sources 
while providing the familiar interface of relational data 
stores. Drill uses the standard SQL syntax and JDBC/ODBC 
interface to submit queries to the non-relational data stores.  

Drill supports queries on self-describing data like JSON, 
with the ability to flatten the nested data. It supports on-the-
fly schema discovery, which enables execution to begin 
without knowing the structure of the data. Based on the data 
description within the submitted query, Drill automatically 

14 BigQuery: https://cloud.google.com/bigquery 
15 Impala: https://goo.gl/po3rIk 
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compiles the query during the execution phase to create the 
schema. As a result, Drill can handle schema-less data. This 
removes the constraint of having an ETL process and 
maintaining schemas before data can be analyzed. 

Unlike other frameworks that translate queries to 
MapReduce jobs, Drill uses the Massive Parallel Processing 
(MPP) paradigm. The MPP paradigm splits the processing 
and data IO across multiple nodes, dividing the job across 
them. MPP nodes use a messaging interface to coordinate the 
job execution. This paradigm allows parallel search, 
processing and fetching of data. 

Architecture-wise, Drill uses a multi-level processing 
architecture. Leaf processes communicate with the storage 
layer to optimize accessing the data in parallel. The leaf 
processes pass partial results to the intermediate processes, 
which perform parallel operations on the intermediate results. 
Intermediate processes then pass the aggregated results to the 
root process, which performs further aggregation and 
provides the final results to the client application. Drill, 
however, does not implement a dedicated root process. 
Instead, any Drill node (aka Drillbit) can accept queries and 
become the root process (aka Driving Drillbit), leading to a 
better load balancing when multiple queries are submitted.  

Each Drillbit has a Storage Adaptor to optimize and 
provide access to the various data stores. The Storage 
Adaptor works with Storage Plugins that transform the data 
loaded from a data store to a unified internal data structure so 
that data of different formats coming from different sources 
can be joined and processed.  In addition, Storage Plugins 
inform the execution engine of any native capabilities to 
speed up the processing, such as predicate pushdown. Drill 
1.4 comes with the following Storage Plugins preinstalled16: 
File System (CSV, JSON, Parquet, and Delimited Text), 
HDFS, HBase, Hive, MongoDB, S3, RDMS (MySQL, 
Oracle DB, MS SQL Server, and Postgres). The Storage 
Adaptor can also include user defined storage plugins for the 
other data stores. 

                                                           
16 Drill Storage: https://goo.gl/EFGTuo 

Query execution-wise, when a Drill SQL query is 
submitted to an application, the Drill JDBC/ODBC interface 
is used to forward the query to a Drillbit that becomes the 
Driving Drillbit and coordinates the execution. The Driving 
Drillbit parses the query to a logical plan that describes the 
work required to generate the query results and defines which 
data sources and operations to apply. A cost-based optimizer 
is then used to apply various types of rules to rearrange the 
logical plan operators and functions to speed up the 
execution.  The cost-based optimizer generates a physical 
plan that describes how to execute the query. 

The physical plan is given to the Parallelizer which 

creates the execution plan by splitting the physical plan into 

multiple execution phases (fragments) that can be executed 

in parallel. The Parallelizer first fragments the plan into major 

fragments. A major fragment represents a phase of one or 

more related operations. Each major fragment is then 

parallelized into as many minor fragments as can be run at 

the same time on the cluster. A minor fragment is a logical 

unit of work that runs inside a thread. Drill schedules the 

minor fragments on nodes with data locality. Otherwise, Drill 

schedules them in a round-robin fashion on the available 

Drillbits. 

IV. QDRILL 

Drill is powerful in terms of accessing and joining data 
from heterogeneous sources, which is usually a cumbersome 
task when done in data mining libraries. On the other hand, 
Drill does not have any data mining capabilities. Developing 
data mining algorithms for Drill is time consuming and so 
would likely be limited to a handful of algorithms, nothing 
compared to those available in the well-established data 
mining libraries. The proposed QDrill with the Analytics 
Adaptor solves these issues by using Drill to load and join 
data from heterogeneous sources and using the pre-existing 
data mining algorithms of well-established data mining 
libraries to train and score data mining models. 

 
 

Figure 1. QDrill structure. 
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The proposed Analytics Adaptor works in an analogous 
way as Drill’s Storage Adaptor. It optimizes and provides 
access to various data mining libraries. The Analytics 
Adaptor works with Analytics Plugins that transform the data 
loaded by Drill to a data structure understandable by the data 
mining libraries. This way, algorithms from more than one 
library can be used together, leaving it to the Analytics 
Adaptor to resolve the inter-library data format conversion. 
In addition, the plugins invoke the APIs of the data mining 
library to train and score data mining models. All these details 
are hidden from users. 

Back to the Consumable Analytics challenges, QDrill 
addresses the first challenge of providing distributed 
analytics by using the proposed Analytics Adaptor. It allows 
using any sequential single-node data mining library (e.g. 
WEKA) and make its algorithms run in a distributed fashion 
without having to rewrite them.  

QDrill addresses the second challenge of providing an 
easy interface for in-house expertise to use by using the 
proposed Distributed Analytics Query Language. It allows 
invoking data mining algorithms from within the Drill 
standard SQL query statements. This allows in-house 
expertise to use the SQL language they are familiar with 
while having QDrill do the distributed deployment, data 
access and execution of the analytics jobs behind the scene. 

For the third challenge of running the analytics on data of 
different formats stored on heterogeneous data stores, QDrill 
relies on Drill’s Storage Adapter. The Storage Adapter allows 
accessing and joining data from heterogeneous sources and 
putting them in a common format to be processed by the 
analytics algorithms. 

As a prototype, we extended Apache Drill 1.2 as outlined 
above and created a plugin for the weka-dev-3.7.13 data 
mining library in the Analytics Adapter in order to access the 
WEKA data mining algorithms using DAQL. The plugin also 
converts the data loaded by Drill to the ARFF format 
accepted by WEKA. In addition, we created a Model Storage 
Plugin that can store and load WEKA models from any data 
store supported by Drill. The full system architecture is 
illustrated in Fig. 1, showing the unmodified components of 
Drill, the modified components and the newly added ones. 

A. Model Training and Scoring  

Data mining models can be split to two types according 
to the data required to do the training. Non-Updateable 
Models require the full dataset available beforehand to do the 
training. Updatable Models are incremental models that can 
be trained using one instance (record) at a time. QDrill’s 
Analytics Adaptor uses two training approaches, one for each 
model type.  

 For Non-Updateable Models, Drill fetches the data in 
parallel, sends all data to the Driving Drillbit where the 
Analytics Adaptor trains the model on this single node. 
This approach does not speed up the training process as 
it is still being done on a single machine. However, it 
speeds up the data loading process. The limitation of this 
approach is that the dataset size is limited to the amount 
of available memory on the Driving Drillbit since a Non-
Updatable Model will need to put all data in memory to 
do the training. 

 For Updatable Models, Drill fetches the data for the 
Analytics Adaptor to process it in parallel. Each Drillbit 
trains an intermediate model, which are then aggregated 
at the Driving Drillbit to produce the final model. This 
approach speeds up both data fetching and model 
training as both operations are done in parallel on all of 
the available Drillbits. This approach is also not limited 
to the amount of available memory since only one record 
needs to be in memory at a time 

 
The Analytics Adaptor uses the proposed Model Storage 

Plugin to store and distribute the trained model across all 
Drillbits to be used later for parallel scoring. In the scoring 
phase, the Model Storage Plugin on each Drillbit loads the 
trained model and the Analytics Adaptor feeds the loaded 
model with records from the data split available on that 
Drillbit, one record at a time. It brings the model to where 
data exists, unlike the traditional approach where data needs 
to be imported to the library. This approach speeds up the 
scoring process by distributing both data fetching and 
scoring. It is also highly flexible as it facilitates scoring on 
only a subset of the data and scoring records as they arrive, 
which is very beneficial for real-time scoring scenarios. 

B. Distributed Analytics Query Language (DAQL) 

The standard SQL syntax supported by Drill is extended 

in this work to provide the analytics functionality producing 

the Distributed Analytics Query Language (DAQL). The 

DAQL adds a number of keywords and User Defined 

Functions (UDFs) to SQL.  

Fig. 2 illustrates using the DAQL to train a WEKA model 

in a distributed fashion using the proposed Analytics 

Adaptor and the WEKA Analytics Plugin. The first SQL 

statement changes the storage location to a writable location. 

The second SQL statement tells the Drill Storage Adaptor to 

use the introduced Model Storage Plugin to save the model 

after training. The third SQL statement fetches the training 

data from any Drill-support data store using the FROM 

clause. The FROM clause can also have a join between two 

heterogeneous data sources. The WHERE clause specifies any 

conditions on the records to fetch. The SQL then uses the 

new qdm_train_weka UDF to define the classifier 

algorithm, set its arguments, specify the data columns to use 

for training and specify the label column, respectively. A 

question mark (?) can be used for the <algorithm> to 

display a list of supported algorithms and for the <args> to 

display a list of valid arguments for the selected algorithm. 

Finally, the statement uses the new TRAIN MODEL clause 

to save the trained model under <model name>. 

SQL-1> USE dfs.tmp; 

SQL-2> ALTER SESSION SET `store.format`='model'; 

SQL-3> TRAIN MODEL <model name> AS  

       SELECT qdm_train_weka(‘<algorithm>',‘<args>',   

                                   columns, label_column)  

       FROM `<Data Source>` 

       WHERE <conditions>; 

Figure 2. Training a WEKA model using DAQL 



Fig. 3 illustrates using DAQL to update an existing 

updatable model with new training records. The first SQL 

statement changes the storage location to a writable location. 

The second SQL statement tells the Drill Storage Adaptor to 

use the Model Storage Plugin. The third SQL statement 

fetches the new training dataset using the FROM clause. The 

new APPLYING keyword in the FROM clause tells Drill 

to fetch the trained model file <old model name>. The 

WHERE clause specifies any conditions on the records to 

fetch. The SQL then uses the new qdm_update_weka 

UDF to define the classifier algorithm, set its arguments, 

specify the model to update, specify the data columns to use 

for training and specify the label column, respectively. 

Finally, it uses the TRAIN MODEL clause to save the new 

trained model under <model name>. 
 

SQL-1> USE dfs.tmp; 

SQL-2> ALTER SESSION SET `store.format`='model'; 

SQL-3> TRAIN MODEL <model name> AS  

       SELECT qdm_update_weka(‘<algorithm>',‘<args>',    

                    mymodel.columns[0], mydata.columns,             

                                     mydata.label_column)  

       FROM `<Data Source>` AS mydata  

                     APPLYING <old model name> AS mymodel 

       WHERE <conditions>; 

Figure 3. Updating an updatable WEKA model using DAQL 

Fig. 4 illustrates using DAQL to score unlabeled data 

using a trained model. The first SQL statement changes the 

storage location to a writable location. The second SQL 

statement tells the Drill Storage Adaptor to save the scored 

records in CSV format. The third SQL statement fetches the 

unlabeled data using the FROM clause. The APPLYING 

keyword in the FROM clause tells Drill to fetch the trained 

model file <model name>. The WHERE clause specifies 

any conditions on the records to fetch. The SQL then uses 

the new qdm_test_weka UDF to apply the trained model 

on the unlabeled data. The UDF defines the classifier 

algorithm, set its arguments, specify the model to use for 

scoring and specify the data columns to use for scoring, 

respectively. This UDF outputs a label for each record in the 

unlabeled dataset. Finally, the SQL statement uses the 

CREATE TABLE clause to save the records along with their 

label in a new table <results>. 
 

SQL-1> USE dfs.tmp; 

SQL-2> ALTER SESSION SET `store.format`=csv'; 

SQL-3> CREATE TABLE <results> AS  

       SELECT mydata.columns, 

                  qdm_test_weka(‘<algorithm>',‘<args>',  

                      mymodel.columns[0], mydata.columns)  

       FROM `<Data Source>` AS mydata  

                         APPLYING <model name> AS mymodel 

       WHERE <conditions>; 

Figure 4. Scoring a trained WEKA model using DAQL 
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The DAQL extends Drill’s standard SQL to add analytics 

capabilities by supporting calls from within the SQL 

statements to any supported data mining library. By 

distributing the algorithms and handling data ETL, the 

DAQL allows users to do analytics in a clear and scalable 

way with less lines of code compared to scripting and 

programming languages. 

V. EVALUATION 

We carried out a set of experiments with our prototype to 

determine if QDrill offers a consumable analytics solution 

for Big Data scenarios. The experiments look at the impact 

of three important factors in Big Data scenarios on the 

performance of QDrill, namely the volume of data, the 

dimensionality of data and the horizontal scalability of the 

approach. In all the experiments we compare the 

performance of QDrill with that of Apache Mahout 0.11 on 

Hadoop 2.0, whose algorithms are designed to be natively 

distributed. 

The Naïve Bayes algorithm is used throughout this 

evaluation as it exists in both solutions. We compare two 

cases for training within QDrill. The first case uses the 

Updatable Naïve Bayes (QDrill U) where data fetching and 

training are distributed. The second case uses the regular 

Naïve Bayes (QDrill NU) where only data fetching is 

distributed and training is done sequentially in mini-batches 

on a single node. Scoring is the same for the two training 

cases. We compare all results with Mahout Distributed 

Naïve Bayes for Hadoop. Default configurations are used for 

all systems and algorithms throughout the evaluation. 

Evaluation is carried out in terms of execution time and 

storage overhead. We checked the accuracy of the resulting 

trained models for all three QDrill U, QDrill NU and Mahout 

and they all had nearly the same accuracy. 

Amazon EC2 T2.Large17 instances are used. They have 

two cores (3.3GHz each), 8GB RAM, 8GB Swap space and 

a 100GB Solid State Disk. Our cluster uses 10 of these nodes 

providing 20 cores, 80GB of RAM and 700GB of distributed 

HDFS storage space that is configured to have three replicas 

per block. 

A. Exp. 1: Data volume analysis  

Experiment 1 evaluates QDrill’s performance, both in 

training and scoring, as more records are thrown at it. In this 

experiment, the number of columns per record is fixed to five 

columns (all integer) and the number of labels is fixed to two 

labels. Datasets of 100, 300, 600 and 1000 million records 

are used. The average of three runs is presented in each case. 

For both training and scoring, most of Mahout’s 

processing time is spent on loading the data into the vector 

format required for processing. This causes Mahout to have 

an expensive storage overhead and a longer processing time. 

Thus, for large datasets (100 million records plus) and small 

number of columns (5 columns), QDrill outperforms Mahout 

https://aws.amazon.com/ec2/instance-types/


both in training and scoring as illustrated in Fig. 5 and 6, 

respectively.  

QDrill processes the data as-is, leaving it to the Analytics 

Plugins to do the data preparation on-the-fly as the data 

loads. This on-the-fly in-memory data format preparation 

saves time and eliminates QDrill storage overhead.  

In the training phase (Fig. 5) and for the same number of 

records, QDrill Updatable Model training (QDrill U) 

consumes less time than QDrill Non-Updatable Model 

training (QDrill NU). Unlike QDrill NU where all training is 

done on a single node, QDrill U is fully parallelized where 

each Drillbit trains a local model and then all models are 

aggregated at the Driving Drillbit. From Fig. 5 we can see 

that QDrill’s worst case performance presented by QDrill 

NU is still better than that of Mahout because QDrill uses in-

memory data format conversion and processing, while 

Mahout uses the disk. That has been said, WEKA only 

supports a small handful of updatable models, making 

QDrill NU the most common scenario which yields the same 

performance as Mahout. We are currently investigating ways 

for speeding up QDrill NU while achieving the same model 

accuracy. 
It worth mentioning here that we tried running Mahout 

0.11 on Spark to include in this comparison. Even though, 
the 100 million record dataset size is 5.27GB and we have 
80GB of RAM and 80 GB of Swap space, Mahout on Spark 
ran out of memory. This makes QDrill more suited for 
scenarios where fast results are required while having 
limited memory. 

B. Exp. 2: Data dimensionality analysis 

Experiment 2 evaluates QDrill’s performance, both in 

training and scoring, as more columns are thrown at it. In 

this experiment, the number of records is fixed to 100 million 

records and the number of labels is fixed to two labels. 

Datasets of 5, 15, 25, 50 and 100 columns (all integer) are 

used. 

For smaller numbers of columns Mahout outperforms 

QDrill NU during the training phase, as illustrated in Fig. 7, 

because a single node has to do all the training. However, as 

the number of columns increases, the dataset size increases 

along with Mahout’s data loading and preparation time. This 

causes QDrill NU to perform better relative to Mahout as the 

dataset size becomes larger. Furthermore, QDrill NU gets 

the job done for any data size fitting in the existing storage 

as it does not have any storage overheads. Mahout fails as 

the data size increases (e.g the 36.51GB dataset of 100 

million records with 100 columns per record) and there 

becomes not enough disk space to store the vector format 

required for processing. 

The QDrill U training and QDrill scoring still vastly 

outperforms Mahout, as illustrated in Fig. 8. For both these 

operations, QDrill uses in-memory MPP to fetch and process 

the data in parallel. 

C. Exp. 3: Scalability analysis 

Experiment 3 evaluates QDrill’s scalability, both in 

training and scoring. In this experiment, the number of 

records is fixed to 100 million records, the number of 

columns is fixed to 25 columns (all integer) and the number 

of labels is fixed to 2. Only the QDrill Updatable model 

training (QDrill U) is included in this evaluation as the 

QDrill Non-Updatable model training always runs on a 

single node and thus will not scale significantly. Evaluation 

is carried on 1, 2, 5 and 10 computing nodes. Each running 

a Drillbit and a MapReduce client.  

From Fig. 9, adding a second node can lead to a 200% 

and 600% speed up for QDrill training and scoring, 

respectively. Moving from 5 nodes to 10 nodes yields 200% 

 
Figure 5. Effect of number of records on training 

 

 
Figure 6. Effect of number of records on scoring 

 
Figure 7. Effect of number of columns on training 

 

 

Figure 8. Effect of number of columns on scoring 

 



speed up for both QDrill training and scoring. This shows 

how QDrill is flexible to scale to as many available nodes. 

QDrill scoring shows better scalability than training. For 

scoring, everything is done in parallel as the trained model 

is distributed on all Drillbits and each Drillbit uses the model 

to score the data split locally available on the node. For 

training, adding more nodes creates more intermediate 

models. This speeds up the training as the data is split among 

a larger number of models being trained in parallel. 

However, this also slows down the models aggregation 

process that is still executed on a single node.  

Mahout scaling, on the other hand, becomes stagnant as 

it reaches the default maximum configured number of 

Mappers and Reducers. Thus adding more nodes does not 

affect the execution time.  

VI. CONCULSIONS AND FUTURE WORK 

In this work, we present an approach based on SQL for 

distributed analytics on Big Data. The proposed approach 

addresses the three main challenges for providing Big Data 

consumable analytics. Addressing the first challenge, QDrill 

introduces the Analytics Adapter and Plugins enabling 

distributed model training and scoring for any sequential 

single-node data mining library without any algorithm 

rewrites. Addressing the second challenge, QDrill introduces 

the Distributed Analytics Query Language extension to Drill 

SQL to provide an easy-to-use interface familiar to database 

in-house experts so that they can run data mining algorithms 

in a distributed fashion without learning any new 

programming languages. Addressing the third challenge, 

QDrill handles putting the data in the format required by the 

data mining libraries and relies on Drill to access and join 

data from heterogeneous sources. 

The empirical studies show that we achieve better 

performance than the natively distributed data mining 

Mahout library. This validates our hypotheses that we can 

achieve the same distributed performance without rewriting 

the algorithms. Using the proposed approach that allows 

reusing sequential single-node algorithms, we reduce the 

development time of distributed data mining libraries, allow 

access to more algorithms, provide an easier-to-use interface 

and increase the scalability. 

Distributing the Non-Updatable models training using 

the proposed approach is still challenging and is the target of 

our future work. Our future work also includes adding more 

Analytics Plugins for popular libraries such as R and 

experimenting with other classes of data mining problems 

such as clustering. 
The source code of the modified Apache Drill (QDrill) 

including the Analytics Adaptor and WEKA plugin is 
publicly available at https://svn.riouxsvn.com/qdrill/ 
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