
Shady S. Khalifa

Sh.khalfia@fci-cu.edu.eg

Faculty of Computers and Information

Cairo University

Application Acceleration Using the Massive

Parallel Processing Power of GPUs

Agenda

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 2

 Introduction to GPGPU (General Purpose Graphical Processing Units)

 Introduction to NVidia CUDA

 CUDA example: Square matrix multiplication

 Current trends in the GPGPU research (Cloud computing, DBMS,

Networks, Security)

Introduction to GPGPU

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 3

Central Processing Unit (CPU)[1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 4

 For more than two decades, Microprocessors based on a single CPU

 drove rapid performance increases in computer applications.

 These microprocessors brought Giga (billion) floating-point operations
per second (GFLOPS) to the desktop and hundreds of GFLOPS to cluster
servers.

 This relentless drive of performance improvement has allowed application
software to provide more functionality, have better user interfaces, and
generate more useful results.

 The users, in turn, demand even more improvements once they become
accustomed to these improvements, creating a positive cycle for the
computer industry.

 During the drive, most software developers have relied on the advances
in hardware to increase the speed of their applications under the hood;
the same software simply runs faster as each new generation of
processors is introduced.

 This drive, however, has slowed since 2003 due to energy consumption
and heat-dissipation issues that have limited the increase of the clock
frequency and the level of productive activities that can be performed in
each clock period within a single CPU.

Multi CPUs (Cores)[1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 5

 Virtually all microprocessor vendors have switched to models

 where multiple processing units, referred to as processor

 cores are used in each chip to increase the processing power.

 Traditionally, the vast majority of software applications are written as
sequential programs. The execution of these programs can be understood
by a human sequentially stepping through the code.

 Historically, computer users have become accustomed to the expectation
that these programs run faster with each new generation of
microprocessors. Such expectation is no longer strictly valid from this day
onward.

 A sequential program will only run on one of the processor cores, which
will not become significantly faster than those in use today.

 Without performance improvement, application developers will no longer
be able to introduce new features and capabilities into their software as
new microprocessors are introduced, thus reducing the growth opportunities
of the entire computer industry.

Future Applications[1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 6

 Applications software that will continue to enjoy performance improvement with
each new generation of microprocessors will be parallel programs, in which multiple

 threads of execution cooperate to complete the work faster.

 The practice of parallel programming is by no means new. The high-performance
computing community has been developing parallel programs for decades. These
programs run on large-scale, expensive computers.

 Only a few elite applications can justify the use of these expensive computers,
thus limiting the practice of parallel programming to a small number of application
developers.

 Now that all new microprocessors are parallel computers, the number of
applications that must be developed as parallel programs has increased dramatically.
There is now a great need for software developers to learn about parallel
programming to cope with the concurrency revolution.

Multi Core Vs Many Core [1,2]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 7

Multi Core Many Core

Target Programs Seeks to maintain the execution speed

of sequential programs while moving

into multiple cores

Focuses more on the execution

throughput of parallel programs

Start Began as two-core processors, with

the number of cores approximately

doubling with each semiconductor

process generation

Began as a large number of much

smaller cores, and the number of

cores doubles with each generation.

Latest Intel Core i7 microprocessor, which has

four and some models have six

processor cores .

NVIDIA GeForce GTX 280 graphics

processing unit (GPU) with 240 cores

Core Capabilities Each core is an out-of-order, multiple

instruction issue processor

implementing the full x86 instruction set,

supports hyper threading with two

hardware threads.

Each Core is a heavily multithreaded,

in-order, single-instruction issue

processor that shares its control and

instruction cache with seven other

cores.

CPUs Design Philosophy [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 8

 The design of a CPU is optimized for sequential code
performance.

 It makes use of sophisticated control logic to allow
instructions from a single thread of execution to execute in
parallel or even out of their sequential order while
maintaining the appearance of sequential execution.

 More importantly, large cache memories are provided to
reduce the instruction and data access latencies of large
complex applications.

 As of 2009, the new general-purpose, multicore
microprocessors typically have four large processor cores
designed to deliver strong sequential code performance.

GPUs Design Philosophy [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 9

 Shaped by the fast growing video game industry, which requires the
ability to perform a massive number of floating-point calculations
per video frame in advanced games.

 This demand motivates the GPU vendors to look for ways to maximize
the chip area and power budget dedicated to floating point
calculations.

 The hardware takes advantage of a large number of execution
threads to find work to do when some of them are waiting for long-
latency memory accesses, thus minimizing the control logic
required for each execution thread.

 Small cache memories are provided to help control the bandwidth
requirements of these applications so multiple threads that access
the same memory data do not need to all go to the DRAM.

 As a result, much more chip area is dedicated to the floating-point
calculations.

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

CPUs Vs GPUs [1]

02-Apr-12 10
Cloud Computing Reading Group @ Cairo

University

Multi Core

(CPU)

Many Core

(GPU)

Peak

floating-

point

calculation

throughput

100GFLOPS TFLOPS

Memory

Bandwidth

(Moving data

in and out of

DRAM)

50 GB/s 150 GB/s.

Memory

bandwidth

increase

constraints

Have to satisfy

requirements

from legacy

operating

systems,

applications,

and I/O

devices.

GPU

designers are

not

constrained as

with CPU

designers.

CPU vs. GPU - YouTube.flv

GPU IEEE floating-point (IEEE 754) Compliance [1,3,4]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 11

 An important consideration in selecting a processor for executing numeric computing applications
is the support for the IEEE floating-point standard. The standard makes it possible to have
predictable results across processors from different vendors.

 The standard defines the way of encoding binary or decimal floating-point numbers in 64 bits
(double precision) and in 32 bits (single precision).

 While support for the IEEE floating-point standard was not strong in early GPUs, GPU support for
the IEEE floating-point standard has now become comparable to that of the CPUs. As a result,
one can expect that more numerical applications will be ported to GPUs and yield comparable
values as the CPUs.

 Today, a major remaining issue is that the floating-point arithmetic units of the GPUs are primarily
single precision. Applications that truly require double-precision floating point were not
suitable for GPU execution.

 Recent GPUs, double-precision execution speed approaches about half that of single
precision, a level that high-end CPU cores achieve. This makes the GPUs suitable for even more
numerical applications.

Moving to General Purpose GPU (GPGPUs)

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 12

 The large performance gap between sequential and parallel execution has already
motivated many applications developers to move the computationally intensive
parts of their software to GPUs for execution.

 In these computationally intensive parts there is more work to do, there is more
opportunity to divide the work among cooperating parallel workers.

 It should be clear now that GPUs are designed as numeric computing engines, and
they will not perform well on some tasks on which CPUs are designed to perform
well; therefore, one should expect that most applications will use both CPUs and
GPUs, executing the sequential parts on the CPU and numerically intensive parts
on the GPUs.

And a lot more in financial analysis, databases and data mining:

http://www.nvidia.com/object/tesla_computing_solutions.html

http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/object/tesla_computing_solutions.html

Introduction to NVidia CUDA

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 13

Compute Unified Device Architecture (CUDA) [1,5]

02-Apr-12 Cloud Computing Reading Group @ Cairo

University

14

 Until 2003, GPGPU was far from easy to program, even for those who knew graphics
programming languages such as OpenGL and Direct3D. Developers had to map
scientific calculations onto problems that could be represented by triangles and
polygons. That’s why only a few people could master the skills necessary to use these
chips to achieve performance for a limited number of applications. consequently, it did
not become a widespread programming phenomenon. Nonetheless, this technology
was sufficiently exciting to inspire some heroic efforts and excellent results.

 In 2003, a team of researchers led by Ian Buck unveiled the Brook programming
model to extend C with data-parallel constructs. The Brook compiler and runtime
system exposed the GPU as a general-purpose processor in a high-level
language. Most importantly, Brook programs were not only easier to write than hand-
tuned GPU code, they were seven times faster than similar existing code.

 Nvidia invited Ian Buck to join the company and start evolving a solution to
seamlessly run C on the GPU. Putting the software and hardware together, Nvidia
unveiled CUDA in 2006, the world's first solution for general-computing on GPUs.

 Nvidia did not represent a change in software alone; additional hardware was added
to the chip area to facilitate the ease of parallel programming. CUDA programs no
longer go through the graphics interface at all. Instead, a new general-purpose
parallel programming interface on the silicon chip serves the requests of CUDA
programs. Moreover, programmers can use the familiar C/C++ programming tools
eliminating the need for using the graphics APIs for computing applications.

 List of CUDA enabled GPUs : http://developer.nvidia.com/cuda-gpus

http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://www.opengl.org/

Architecture of Modern CUDA-capable GPUs [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 15

CUDA-capable GPU is organized

into an array of highly threaded

streaming multiprocessors

(SMs).

Two SMs form a building block.

Each SM has a number of

streaming processors (SPs) that

share control logic and

instruction cache.

Each GPU currently comes with

up to 4 gigabytes of graphics

double data rate (GDDR) DRAM,

referred to as Global Memory.

These GDDR DRAMs differ from the system DRAMs in that for graphics applications, they hold video

images, and texture information, but for computing they function as very-high-bandwidth, off-chip

memory, though with somewhat more latency than typical system memory.

For massively parallel applications, the higher bandwidth makes up for the longer latency. GPUs have

a 86.4 GB/s of memory bandwidth, plus an 8 GB/s (4 GB/s download + 4 GB/s upload) communication

bandwidth with the CPU.

GPU Power [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 16

 The massively parallel G80 chip has16 SMs,

 each with 8 SPs (128 SPs in total) that can

 support a total of over 500 GFLOPS.

 Each SP has a Multiply–Add (MAD) unit and

 an additional Multiply unit. In addition, special

 function units perform floating-point functions such as square root (SQRT).

 While Intel CPUs support 2 or 4 threads per core. The G80 chip supports

 up to 768 threads per SM, which sums up to about (768 * 16 = 12,000) threads

 The more recent GT200 consists of 240 SP and supports 1024 threads per SM and up to about
30,000 threads for the chip.

 Because each SP is massively threaded, it can run thousands of threads per application. It is
very important to strive for such levels of parallelism when developing GPU parallel computing
applications. A good application typically runs 5000–12,000 threads simultaneously on this chip.

 In the image: Nvidia Fermi (one of the latest Nvidia inventions) which consists of (16*32) 512 SPs to
give ~1.5TFLOPS (SP)/~800GFLOPS (DP)

Next Generation CUDA Architecture, Code Named Fermi.flv
Next Generation CUDA Architecture, Code Named Fermi.flv

How to make best benefit from the GPU power [1]

02-Apr-12 Cloud Computing Reading Group @ Cairo

University

17

 It depends on the portion of the application that can be parallelized, DRAM

 bandwidth management, on-chip memory capacity management and using CPU

 to complement the GPU.

 If the percentage of time spent in the part that can be parallelized is 30%, a 100X speedup of the
parallel portion will reduce the total execution time by 29.7%. The speedup for the entire application
will be only 1.4X.

 On the other hand, if 99% of the execution time is in the parallel portion, a 100X speedup will reduce
the application execution to 1.99% of the original time. This gives the entire application a 50X
speedup.

 Therefore, it is very important that an application has the vast majority of its execution in the parallel
portion for a massively parallel processor to effectively speedup its execution. This can be achieved
only after extensive optimization and tuning of the algorithms.

 In general, straightforward parallelization of applications often saturates the memory (DRAM)
bandwidth, resulting in only about a 10X speedup. The trick is to figure out how to get around
memory bandwidth limitations, which involves doing one of many transformations to utilize specialized
GPU on-chip memories to drastically reduce the number of accesses to the DRAM. One must,
however, further optimize the code to get around limitations such as limited on-chip memory
capacity.

 In some applications, CPUs perform very well, making it more difficult to speed up performance
using a GPU. Most applications have portions that can be much better executed by the CPU. Thus,
one must give the CPU a fair chance to perform and make sure that code is written in such a way
that GPUs complement CPU execution.

Introduction to CUDA [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 18

 The computing system consists of:

 Host: a traditional CPU

 One or more Devices: massively parallel processors GPU

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 19

 Serial or modestly parallel parts written in Host C code and run on the

CPU

 Highly parallel parts written in Device SPMD (single program,
multiple data) kernel C code and run on the GPU (Has its own device
memory DRAM and Runs many threads in parallel)

Serial Code (host)‏

. .

.

. . .

Parallel Kernel (device)‏

Serial Code (host)‏

Parallel Kernel (device)‏

Integrated (Host + Device) C application program [1]

Function Declaration [1]

02-Apr-12 Cloud Computing Reading Group @ Cairo

University

20

 The __global__ keyword indicates that the function being declared is a CUDA kernel function. The

function will be executed on the device and can only be called from the host to generate a grid of

threads on a device. Must return void. Calls to kernel functions are Asynchronous.

 The __device__ keyword indicates that the function being declared is a CUDA device function. A

device function executes on a CUDA device and can only be called from a kernel function or

another device function. Device functions can NOT have recursive function calls , static variable

declaration, variable number of arguments nor indirect function calls through pointers in

them.

 The __host__ keyword indicates that the function being declared is a CUDA host function. A host

function is simply a traditional C function that executes on the host and can only be called from

another host function.

 By default, all functions in a CUDA program are host functions if they do not have any of the

CUDA keywords in their declaration. This makes sense, as many CUDA applications are ported

from CPU-only execution environments.

 Both __host__ and __device__ can be used at the same time in a function declaration. This

combination triggers the compilation system to generate two versions of the same function. One

is executed on the host and can only be called from a host function. The other is executed on

the device and can only be called from a device or kernel function. This supports a common use

when the same function source code can be simply recompiled to generate a device version.

Thread Blocks [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 21

 Divide monolithic thread array into multiple blocks, each of which is

defined by a Block ID

 Threads within a block cooperate via shared memory, atomic

operations and barrier synchronization

 Threads in different blocks cannot cooperate

 All threads in all blocks run the same code (SPMD)‏

 Each thread has a Thread ID that it uses to compute memory

addresses and make control decisions

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 1

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Block IDs and Thread IDs [1]

02-Apr-12 Cloud Computing Reading Group @ Cairo

University
22

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

• When a kernel is invoked, it is executed as grid of parallel

Threads. Each grid is comprised of thousands to millions

of lightweight GPU threads.

• Threads in a grid are organized into a two-level hierarchy:

• At the top level, each grid consists of one or more

thread blocks. All blocks in a grid have the same

number of threads. Each block has a unique two

dimensional coordinate given by the CUDA specific

keywords blockIdx.x and blockIdx.y.

• Each thread block is, in turn, organized as a three-

dimensional array of threads with a total size of up to

512 threads. The coordinates of threads in a block are

uniquely defined by three thread indices: threadIdx.x,

threadIdx.y, and threadIdx.z. Not all applications will

use all three dimensions of a thread block.

• In the Figure, each thread block is organized into a 4*2*2

three-dimensional array of threads. This gives Grid 1 a total

of 4*16 = 64 threads.

Memories [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 23

 Device (Kernel) code can:

 R/W per-thread registers

 R/W per-thread local memory

 R/W per-block shared memory

 R/W per-grid global memory

 Read only per-grid constant Memory

 Host code can:

 Transfer data to/from per-grid global and

constant memories

Global Memory [1]

02-Apr-12 Cloud Computing Reading Group @ Cairo

University

24

 Global memory is the main means of communicating R/W Data between host and device

 Contents visible to all threads

 Long latency access

 cudaMalloc(): Allocates object in the device Global memory.

 Requires two parameters:

 Address of a pointer to the allocated object

 Size of allocated object

 cudaFree(): Frees object from device Global Memory

 Requires pointer to freed object.

 cudaMemcpy(): Asynchronous memory data transfer.

 Requires four parameters:

 Pointer to destination

 Pointer to source

 Number of bytes copied

 Type of transfer

o Host to Host

o Host to Device

o Device to Host

o Device to Device

Where to declare variables? [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 25

A Common Programming

Strategy [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 26

 Global memory resides in device memory (DRAM) is much slower access than
shared memory.

 So, a profitable way of performing computation on the device is to tile data to take
advantage of fast shared memory:
 Partition data into subsets that fit into shared memory.

 Handle each data subset with one thread block by:

 Loading the subset from global memory to shared memory, using multiple threads
to exploit memory-level parallelism.

 Performing the computation on the subset from shared memory; each thread can
efficiently multi-pass over any data element

 Copying results from shared memory to global memory.

 Constant memory also resides in device memory (DRAM) and is much slower
access than shared memory but cached which can provide highly efficient access
for read-only data.

 Carefully divide data according to access patterns:
 R/Only  constant memory (very fast if in cache)

 R/W shared within Block  shared memory (very fast)

 R/W within each thread  registers (very fast)

 R/W inputs/results  global memory (very slow)

Processing flow on CUDA [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 27

CUDA example: Square matrix multiplication

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 28

Example: Square Matrix

Multiplication [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 29

 P = M * N

 sizeOf(P) = WIDTH x WIDTH

 Without tiling (Partition data into subsets

that fit into shared memory):

 One thread calculates one element of P

 M and N are loaded WIDTH times from

global memory

Memory Layout of a Matrix in C [1]

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 30

For Example: M(i,k) = M(2,3) => M(i * Width + k) = M(2*4+3) =
M(11)

Step 1: Matrix Multiplication

A Simple Host Version in C

02-Apr-12 Cloud Computing Reading Group @ Cairo

University

31

// Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏

{

 for (int i = 0; i < Width; ++i)‏

 for (int j = 0; j < Width; ++j) {

 double sum = 0;

 for (int k = 0; k < Width; ++k) {

 double a = M[i * width + k];

 double b = N[k * width + j];

 sum += a * b;

 }

 P[i * Width + j] = sum;

 }

}

Step 2: Input Matrix Data Transfer
(Host-side Code)‏

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 32

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{
 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 …

1. // Allocate and Load M, N to device memory

 cudaMalloc(&Md, size);

 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);

 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer
(Host-side Code)‏

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 33

2. // Kernel invocation code – to be shown later in Step 5

 …

3. // Read P from the device

 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices

 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

 }

Step 4: Kernel Function

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 34

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏

{

 // Pvalue is used to store the element of the matrix

 // that is computed by the thread

 float Pvalue = 0;

 for (int k = 0; k < Width; ++k)‏ {

 float Melement = Md[threadIdx.y*Width+k];

 float Nelement = Nd[k*Width+threadIdx.x];

 Pvalue += Melement * Nelement;

 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;

}

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Step 5: Kernel Invocation

(Host-side Code)

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 35

 // Setup the execution configuration

 dim3 dimGrid(1, 1);

 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!

 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Only One Thread Block Used

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 36

 One Block of threads compute matrix Pd
 Each thread computes one element of Pd

 Each thread
 Loads a row of matrix Md

 Loads a column of matrix Nd

 Perform one multiply and addition for each pair of Md
and Nd elements

 Compute to off-chip memory access ratio close to
1:1

 Size of matrix limited by the number of threads
allowed in a thread block.

 All threads access global memory for their input
matrix elements

 Two memory accesses (8 bytes) per floating point
multiply-add

 4B/s of memory bandwidth/FLOPS
 4*346.5 = 1386 GB/s required to achieve peak

FLOP rating
 86.4 GB/s limits the code at 21.6 GFLOPS

 The actual code runs at about 15 GFLOPS

 Need to drastically cut down memory accesses to
get closer to the peak 346.5 GFLOPS

Using Tiles and Multiple Blocks

02-Apr-12 Cloud Computing Reading Group @ Cairo

University
37

 Break up the execution of the kernel into phases so that the data

accesses in each phase is focused on one subset (tile) of Md and

Nd.

 Each block computes one square sub-matrix Pdsub of size

TILE_WIDTH and so a Ndsub and Mdsub can be loaded to the block

shared memory for faster access than using the Global memory.

 Each thread computes one element of sub-matrix Pdsub

 For more details on the code details and on using the optimal

block size please read chapters 4 & 5 in [1].

Current trends in the GPGPU research

(Cloud computing, DBMS and Data Mining, Networks and Security)

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 38

Cloud Computing

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 39

 GPGPU Virtualization:

Sharing GPU power between

users in the cloud with a

pay-as-you-go strategy.

 Amazon EC2 Cluster GPU instances [6]

 Zillians GPU Virtualization [7]

 GPU virtualization on VMware's hosted I/O architecture [8]

 GPU Cluster for High Performance Computing [9]

 Supporting GPU sharing in cloud environments with a transparent

runtime consolidation framework [10]

DBMS and Data Mining

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 40

 Mars: Accelerating MapReduce with Graphics Processors [11]

 A New PostgreSQL Procedural Language

 Unlocking the Power of the GPU [12]

 Hardware acceleration in commercial databases:

 a case study of spatial operations [13]

 GPUQP: Query Co-Processing

 Using Graphics Processors [14]

Network and Security

02-Apr-12 Cloud Computing Reading Group @ Cairo

University

41

 GPU packet classification using OpenCL: a consideration of viable classification methods [15]

 Parallel packet classification using GPU co-processors [16]

 Efficient GPGPU-Based Parallel Packet Classification. [17]

 Acceleration of packet filtering using gpgpu [18]

 Research into GPU accelerated pattern matching for applications in computer security [19]

 Hermes: an integrated CPU/GPU microarchitecture for IP routing [20]

 PacketShader: a GPU-accelerated software router [21]

Quiz

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 42

 Now after knowing everything about the massive processing power of

GPUs.

 Mention a problem that using GPUs would help.

CUDA

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 43

 Toolkit

 http://developer.nvidia.com/cuda-downloads

 List of CUDA enabled GPUs :
http://developer.nvidia.com/cuda-gpus

 If you find this topic interesting to you, I recommend
reading the book in reference 1 and checking the
course in http://courses.engr.illinois.edu/ece498/al/

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://courses.engr.illinois.edu/ece498/al/

References

02-Apr-12 Cloud Computing Reading Group @ Cairo

University

44

1) David B. Kirk and Wen-mei W. Hwu, “Programming‏Massively‏Parallel‏Processors:‏A‏Hands-on‏Approach”,‏Morgan‏Kaufmann‏Publishers,2010‏. ISBN: 978-0-12-381472-2

2) http://en.wikipedia.org/wiki/Intel_Core

3) http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

4) http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx

5) http://www.nvidia.com/object/cuda_home_new.html

6) http://aws.amazon.com/hpc-applications/

7) http://www.zillians.com/vgpu/how_it_works

8) Micah Dowty and Jeremy Sugerman. 2009. GPU virtualization on VMware's hosted I/O architecture. SIGOPS Oper. Syst. Rev. 43, 3 (July 2009), 73-82.

9) Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. 2004. GPU Cluster for High Performance Computing. In Proceedings of the 2004 ACM/IEEE conference on

Supercomputing(SC '04).

10) Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Srimat Chakradhar. 2011. Supporting GPU sharing in cloud environments with a transparent runtime consolidation

framework. InProceedings of the 20th international symposium on High performance distributed computing(HPDC '11).

11) Wenbin Fang, Bingsheng He, Qiong Luo, and Naga K. Govindaraju. 2011. Mars: Accelerating MapReduce with Graphics Processors. IEEE Trans. Parallel Distrib. Syst. 22, 4

(April 2011), 608-620.

12) http://wiki.postgresql.org/images/6/65/Pgopencl.pdf

13) Nagender Bandi, Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. 2004. Hardware acceleration in commercial databases: a case study of spatial operations.

In Proceedings of the Thirtieth international conference on Very large data bases - Volume 30 (VLDB '04), 1021-1032.

14) http://www.cse.ust.hk/gpuqp/

15) Alastair Nottingham and Barry Irwin. 2009. GPU packet classification using OpenCL: a consideration of viable classification methods. In Proceedings of the 2009 Annual

Research Conference of the South African Institute of Computer Scientists and Information Technologists (SAICSIT '09).

16) Alastair Nottingham and Barry Irwin. 2010. Parallel packet classification using GPU co-processors. In Proceedings of the 2010 Annual Research Conference of the South African

Institute of Computer Scientists and Information Technologists (SAICSIT '10).

17) Che-Lun Hung, Hsiao-Hsi Wang, Shih-Wei Guo, Yaw-Ling Lin, and Kuan-Ching Li. 2011. Efficient GPGPU-Based Parallel Packet Classification. In Proceedings of the 2011IEEE

10th International Conference on Trust, Security and Privacy in Computing and Communications(TRUSTCOM '11).

18) Manoj Singh Gaur, Vijay Laxmi, Lakshminarayanan V., Kamal Cahndra, and Mark Zwolinski. 2011. Acceleration of packet filtering using gpgpu. In Proceedings of the 4th

international conference on Security of information and networks (SIN '11).

19) http://www.csse.canterbury.ac.nz/research/reports/HonsReps/2009/hons_0905.pdf

20) Yuhao Zhu, Yangdong Deng, and Yubei Chen. 2011. Hermes: an integrated CPU/GPU microarchitecture for IP routing. In Proceedings of the 48th Design Automation

Conference (DAC '11).

21) Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader: a GPU-accelerated software router. In Proceedings of the ACM SIGCOMM 2010

conference (SIGCOMM '10).

http://en.wikipedia.org/wiki/Intel_Core
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://perspectives.mvdirona.com/2009/03/15/HeterogeneousComputingUsingGPGPUsNVidiaGT200.aspx
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://aws.amazon.com/hpc-applications/
http://aws.amazon.com/hpc-applications/
http://aws.amazon.com/hpc-applications/
http://www.zillians.com/vgpu/how_it_works
http://wiki.postgresql.org/images/6/65/Pgopencl.pdf
http://wiki.postgresql.org/images/6/65/Pgopencl.pdf
http://wiki.postgresql.org/images/6/65/Pgopencl.pdf
http://wiki.postgresql.org/images/6/65/Pgopencl.pdf
http://wiki.postgresql.org/images/6/65/Pgopencl.pdf
http://www.cse.ust.hk/gpuqp/
http://www.csse.canterbury.ac.nz/research/reports/HonsReps/2009/hons_0905.pdf
http://www.csse.canterbury.ac.nz/research/reports/HonsReps/2009/hons_0905.pdf
http://www.csse.canterbury.ac.nz/research/reports/HonsReps/2009/hons_0905.pdf
http://www.csse.canterbury.ac.nz/research/reports/HonsReps/2009/hons_0905.pdf
http://www.csse.canterbury.ac.nz/research/reports/HonsReps/2009/hons_0905.pdf

Questions

02-Apr-12
Cloud Computing Reading Group @ Cairo

University 45

