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Central Processing Unit (CPU)[1] 
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 For more than two decades, Microprocessors based on a single CPU  

     drove rapid performance increases in computer applications.  

 

 These microprocessors brought Giga (billion) floating-point operations 
per second (GFLOPS) to the desktop and hundreds of GFLOPS to cluster 
servers.  

 

 This relentless drive of performance improvement has allowed application 
software to provide more functionality, have better user interfaces, and 
generate more useful results. 

 

 The users, in turn, demand even more improvements once they become 
accustomed to these improvements, creating a positive cycle for the 
computer industry. 

 

 During the drive, most software developers have relied on the advances 
in hardware to increase the speed of their applications under the hood; 
the same software simply runs faster as each new generation of 
processors is introduced.  

 

 This drive, however, has slowed since 2003 due to energy consumption 
and heat-dissipation issues that have limited the increase of the clock 
frequency and the level of productive activities that can be performed in 
each clock period within a single CPU.  



Multi CPUs (Cores)[1]  
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 Virtually all microprocessor vendors have switched to models  

      where multiple processing units, referred to as processor  

      cores are used in each chip to increase the processing power. 

 

 Traditionally, the vast majority of software applications are written as 
sequential programs. The execution of these programs can be understood 
by a human sequentially stepping through the code.  

 

 Historically, computer users have become accustomed to the expectation 
that these programs run faster with each new generation of 
microprocessors. Such expectation is no longer strictly valid from this day 
onward.  

 

 A sequential program will only run on one of the processor cores, which 
will not become significantly faster than those in use today.  

 

 Without performance improvement, application developers will no longer 
be able to introduce new features and capabilities into their software as 
new microprocessors are introduced, thus reducing the growth opportunities 
of the entire computer industry. 

 



Future Applications[1] 
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 Applications software that will continue to enjoy performance improvement with 
each new generation of microprocessors will be parallel programs, in which multiple  

     threads of execution cooperate to complete the work faster.  

 

 The practice of parallel programming is by no means new. The high-performance 
computing community has been developing parallel programs for decades. These 
programs run on large-scale, expensive computers. 

 

 Only a few elite applications can justify the use of these expensive computers, 
thus limiting the practice of parallel programming to a small number of application 
developers.  

 

 Now that all new microprocessors are parallel computers, the number of 
applications that must be developed as parallel programs has increased dramatically. 
There is now a great need for software developers to learn about parallel 
programming to cope with the concurrency revolution. 



Multi Core Vs Many Core [1,2] 
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Multi Core Many Core 

Target Programs Seeks to maintain the execution speed 

of sequential programs while moving 

into multiple cores 

Focuses more on the execution 

throughput of parallel programs 

Start Began as two-core processors, with 

the number of cores approximately 

doubling with each semiconductor 

process generation 

Began as a large number of much 

smaller cores, and the number of 

cores doubles with each generation. 

Latest Intel Core i7 microprocessor, which has 

four and some models have six 

processor cores . 

NVIDIA GeForce GTX 280 graphics 

processing unit (GPU) with 240 cores 

Core Capabilities Each core is an out-of-order, multiple 

instruction issue processor 

implementing the full x86 instruction set, 

supports hyper threading with two 

hardware threads. 

Each Core is a heavily multithreaded, 

in-order, single-instruction issue 

processor that shares its control and 

instruction cache with seven other 

cores. 



CPUs Design Philosophy [1] 
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 The design of a CPU is optimized for sequential code 
performance.  

 

 It makes use of sophisticated control logic to allow 
instructions from a single thread of execution to execute in 
parallel or even out of their sequential order while 
maintaining the appearance of sequential execution.  

 

 More importantly, large cache memories are provided to 
reduce the instruction and data access latencies of large 
complex applications.  

 

 As of 2009, the new general-purpose, multicore 
microprocessors typically have four large processor cores 
designed to deliver strong sequential code performance. 



GPUs Design Philosophy [1] 
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 Shaped by the fast growing video game industry, which requires the 
ability to perform a massive number of floating-point calculations 
per video frame in advanced games.  

 

 This demand motivates the GPU vendors to look for ways to maximize 
the chip area and power budget dedicated to floating point 
calculations.  

 

 The hardware takes advantage of a large number of execution 
threads to find work to do when some of them are waiting for long-
latency memory accesses, thus minimizing the control logic 
required for each execution thread.  

 

 Small cache memories are provided to help control the bandwidth 
requirements of these applications so multiple threads that access 
the same memory data do not need to all go to the DRAM.  

 

 As a result, much more chip area is dedicated to the floating-point 
calculations. 

 



Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

CPUs Vs GPUs [1] 
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(Moving data 

in and out of 

DRAM) 

50 GB/s 150 GB/s. 

Memory 
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with CPU 

designers.  

CPU vs. GPU - YouTube.flv


GPU IEEE floating-point (IEEE 754) Compliance [1,3,4] 
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 An important consideration in selecting a processor for executing numeric computing applications 
is the support for the IEEE floating-point standard. The standard makes it possible to have 
predictable results across processors from different vendors.  

 

 The standard defines the way of encoding binary or decimal floating-point numbers in 64 bits 
(double precision) and in 32 bits (single precision). 

 

 While support for the IEEE floating-point standard was not strong in early GPUs, GPU support for 
the IEEE floating-point standard has now become comparable to that of the CPUs.  As a result, 
one can expect that more numerical applications will be ported to GPUs and yield comparable 
values as the CPUs. 

 

 Today, a major remaining issue is that the floating-point arithmetic units of the GPUs are primarily 
single precision. Applications that truly require double-precision floating point were not 
suitable for GPU execution.  

 

 Recent GPUs, double-precision execution speed approaches about half that of single 
precision, a level that high-end CPU cores achieve. This makes the GPUs suitable for even more 
numerical applications. 



Moving to General Purpose GPU (GPGPUs) 
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 The large performance gap between sequential and parallel execution has already 
motivated many applications developers to move the computationally intensive 
parts of their software to GPUs for execution.  

 

 In these computationally intensive parts there is more work to do, there is more 
opportunity to divide the work among cooperating parallel workers. 

 

 It should be clear now that GPUs are designed as numeric computing engines, and 
they will not perform well on some tasks on which CPUs are designed to perform 
well; therefore, one should expect that most applications will use both CPUs and 
GPUs, executing the sequential parts on the CPU and numerically intensive parts 
on the GPUs.  

 

And a lot more in financial analysis, databases and data mining:  

 

http://www.nvidia.com/object/tesla_computing_solutions.html 

http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/object/tesla_computing_solutions.html


Introduction to NVidia CUDA  
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Compute Unified Device Architecture (CUDA) [1,5] 
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 Until 2003, GPGPU was far from easy to program, even for those who knew graphics 
programming languages such as OpenGL and Direct3D. Developers had to map 
scientific calculations onto problems that could be represented by triangles and 
polygons. That’s why only a few people could master the skills necessary to use these 
chips to achieve performance for a limited number of applications. consequently, it did 
not become a widespread programming phenomenon. Nonetheless, this technology 
was sufficiently exciting to inspire some heroic efforts and excellent results. 

 

 In 2003, a team of researchers led by Ian Buck unveiled the Brook programming 
model to extend C with data-parallel constructs. The Brook compiler and runtime 
system exposed the GPU as a general-purpose processor in a high-level 
language. Most importantly, Brook programs were not only easier to write than hand-
tuned GPU code, they were seven times faster than similar existing code.  

 

 Nvidia invited Ian Buck to join the company and start evolving a solution to 
seamlessly run C on the GPU. Putting the software and hardware together, Nvidia 
unveiled CUDA in 2006, the world's first solution for general-computing on GPUs. 

 

 Nvidia did not represent a change in software alone; additional hardware was added 
to the chip area to facilitate the ease of parallel programming. CUDA programs no 
longer go through the graphics interface at all. Instead, a new general-purpose 
parallel programming interface on the silicon chip serves the requests of CUDA 
programs. Moreover, programmers can use the familiar C/C++ programming tools 
eliminating the need for using the graphics APIs for computing applications. 

 

 List of CUDA enabled GPUs : http://developer.nvidia.com/cuda-gpus 

 

http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://www.opengl.org/


Architecture of Modern CUDA-capable GPUs [1] 
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CUDA-capable GPU is organized 

into an array of highly threaded 

streaming multiprocessors 

(SMs). 

 

Two SMs form a building block.  

 

Each SM has a number of 

streaming processors (SPs) that 

share control logic and 

instruction cache. 

 

Each GPU currently comes with 

up to 4 gigabytes of graphics 

double data rate (GDDR) DRAM, 

referred to as Global Memory. 

  
These GDDR DRAMs differ from the system DRAMs in that for graphics applications, they hold video 

images, and texture information, but for computing they function as very-high-bandwidth, off-chip 

memory, though with somewhat more latency than typical system memory.  

 

For massively parallel applications, the higher bandwidth makes up for the longer latency. GPUs have 

a 86.4 GB/s of memory bandwidth, plus an 8 GB/s (4 GB/s download + 4 GB/s upload) communication 

bandwidth with the CPU. 



GPU Power [1] 
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 The massively parallel G80 chip has16 SMs,  

     each with 8 SPs (128 SPs in total) that can  

     support a total of over 500 GFLOPS. 

 

 Each SP has a Multiply–Add (MAD) unit and  

 an additional Multiply unit.  In addition, special  

      function units perform floating-point functions such as square root (SQRT). 

 

 While Intel CPUs support 2 or 4 threads per core. The G80 chip supports  

     up to 768 threads per SM, which sums up to about (768 * 16 = 12,000) threads 

 

 The more recent GT200 consists of 240 SP and supports 1024 threads per SM and up to about 
30,000 threads for the chip.  

 

 Because each SP is massively threaded, it can run thousands of threads per application. It is 
very important to strive for such levels of parallelism when developing GPU parallel computing 
applications. A good application typically runs 5000–12,000 threads simultaneously on this chip. 

 

 In the image: Nvidia Fermi (one of the latest Nvidia inventions) which consists of (16*32)  512 SPs to 
give ~1.5TFLOPS (SP)/~800GFLOPS (DP) 

 

 

Next Generation CUDA Architecture, Code Named Fermi.flv
Next Generation CUDA Architecture, Code Named Fermi.flv


How to make best benefit from the GPU power [1] 
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 It depends on the portion of the application that can be parallelized, DRAM  

      bandwidth management, on-chip memory capacity management and using CPU  

      to complement the GPU. 

 

 If the percentage of time spent in the part that can be parallelized is 30%, a 100X speedup of the 
parallel portion will reduce the total execution time by 29.7%. The speedup for the entire application 
will be only 1.4X.  

 

 On the other hand, if 99% of the execution time is in the parallel portion, a 100X speedup will reduce 
the application execution to 1.99% of the original time. This gives the entire application a 50X 
speedup. 

 

 Therefore, it is very important that an application has the vast majority of its execution in the parallel 
portion for a massively parallel processor to effectively speedup its execution. This can be achieved 
only after extensive optimization and tuning of the algorithms. 

 

 In general, straightforward parallelization of applications often saturates the memory (DRAM) 
bandwidth, resulting in only about a 10X speedup. The trick is to figure out how to get around 
memory bandwidth limitations, which involves doing one of many transformations to utilize specialized 
GPU on-chip memories to drastically reduce the number of accesses to the DRAM. One must, 
however, further optimize the code to get around limitations such as limited on-chip memory 
capacity.  

 

 In some applications, CPUs perform very well, making it more difficult to speed up performance 
using a GPU. Most applications have portions that can be much better executed by the CPU. Thus, 
one must give the CPU a fair chance to perform and make sure that code is written in such a way 
that GPUs complement CPU execution. 



Introduction to CUDA [1] 
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 The computing system consists of: 

 Host: a traditional CPU 

 One or more Devices: massively parallel processors GPU 
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 Serial or modestly parallel parts written in Host C code and run on the 

CPU 
 

 Highly parallel parts written in Device SPMD  (single program, 
multiple data) kernel C code and run on the GPU (Has its own device 
memory DRAM and Runs many threads in parallel ) 

Serial Code (host)‏ 

. . 

. 

. . . 

Parallel Kernel (device)‏ 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 

Integrated (Host + Device) C application program [1] 



Function Declaration [1] 

02-Apr-12 Cloud Computing Reading Group @ Cairo 

University 

20 

 The __global__ keyword indicates that the function being declared is a CUDA kernel function. The 

function will be executed on the device and can only be called from the host to generate a grid of 

threads on a device. Must return void. Calls to kernel functions are Asynchronous. 

 

 The __device__ keyword indicates that the function being declared is a CUDA device function. A 

device function executes on a CUDA device and can only be called from a kernel function or 

another device function. Device functions can NOT have recursive function calls , static variable 

declaration, variable number of arguments nor indirect function calls through pointers in 

them.  
 

 The __host__ keyword indicates that the function being declared is a CUDA host function. A host 

function is simply a traditional C function that executes on the host and can only be called from 

another host function.  

 By default, all functions in a CUDA program are host functions if they do not have any of the 

CUDA keywords in their declaration. This makes sense, as many CUDA applications are ported 

from CPU-only execution environments.  
 

 Both __host__ and __device__ can be used at the same time in a function declaration. This 

combination triggers the compilation system to generate two versions of the same function. One 

is executed on the host and can only be called from a host function. The other is executed on 

the device and can only be called from a device or kernel function. This supports a common use 

when the same function source code can be simply recompiled to generate a device version. 

 



Thread Blocks  [1] 
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 Divide monolithic thread array into multiple blocks, each of which is 

defined by a Block ID 

 Threads within a block cooperate via shared memory, atomic 

operations and barrier synchronization 

 Threads in different blocks cannot cooperate 

 All threads in all blocks run the same code (SPMD)‏ 

 Each thread has a Thread ID that it uses to compute memory 

addresses and make control decisions 

 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 

Thread Block 0 

… 
… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block 1 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block N - 1 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 



Block IDs and Thread IDs  [1] 
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Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.
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Thread
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(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

 

• When a kernel is invoked, it is executed as grid of parallel 

Threads. Each grid is comprised of thousands to millions 

of lightweight GPU threads. 

 

• Threads in a grid are organized into a two-level hierarchy: 

 

• At the top level, each grid consists of one or more 

thread blocks. All blocks in a grid have the same 

number of threads. Each block has a unique two 

dimensional coordinate given by the CUDA specific 

keywords blockIdx.x and blockIdx.y.  

 

• Each thread block is, in turn, organized as a three-

dimensional array of threads with a total size of up to 

512 threads. The coordinates of threads in a block are 

uniquely defined by three thread indices: threadIdx.x, 

threadIdx.y, and threadIdx.z. Not all applications will 

use all three dimensions of a thread block.  

 

• In the Figure, each thread block is organized into a 4*2*2 

three-dimensional array of threads. This gives Grid 1 a total 

of 4*16 = 64 threads. 



Memories [1] 
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 Device (Kernel) code can: 

 R/W per-thread registers 

 R/W per-thread local memory 

 R/W per-block shared memory 

 R/W per-grid global memory 

 Read only per-grid constant Memory 

 

 Host code can: 

 Transfer data to/from per-grid global and 

constant memories 

 

 

 



Global Memory [1] 
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 Global memory is the main means of communicating R/W Data between host and device 

 Contents visible to all threads 

 Long latency access 

 cudaMalloc(): Allocates object in the device Global memory.  

 Requires two parameters: 

 Address of a pointer to the allocated object 

 Size of allocated object 

 cudaFree(): Frees object from device Global Memory  

 Requires pointer to freed object. 

 cudaMemcpy(): Asynchronous memory data transfer.  

 Requires four parameters: 

 Pointer to destination  

 Pointer to source 

 Number of bytes copied 

 Type of transfer  

o Host to Host  

o Host to Device 

o Device to Host 

o Device to Device 



Where to declare variables? [1] 
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A Common Programming 

Strategy [1] 
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 Global memory resides in device memory (DRAM) is much slower access than 
shared memory. 

 So, a profitable way of performing computation on the device is to tile data to take 
advantage of fast shared memory: 
 Partition data into subsets that fit into shared memory. 

 Handle each data subset with one thread block by: 

 Loading the subset from global memory to shared memory, using multiple threads 
to exploit memory-level parallelism. 

 Performing the computation on the subset from shared memory; each thread can 
efficiently multi-pass over any data element 

 Copying results from shared memory to global memory. 

 

 Constant memory also resides in device memory (DRAM) and is much slower 
access than shared memory but cached which can provide highly efficient access 
for read-only data. 

 

 Carefully divide data according to access patterns: 
 R/Only  constant memory (very fast if in cache) 

 R/W shared within Block  shared memory (very fast) 

 R/W within each thread  registers (very fast) 

 R/W inputs/results  global memory (very slow) 
 

 



Processing flow on CUDA [1] 
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CUDA example: Square matrix multiplication 
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Example: Square Matrix 

Multiplication [1] 
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 P = M * N  

 sizeOf(P) = WIDTH x WIDTH 

 

 Without tiling (Partition data into subsets 

that fit into shared memory): 

 One thread calculates one element of P 

 M and N are loaded WIDTH times from 

global memory 

 



Memory Layout of a Matrix in C [1] 
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For Example: M(i,k) = M(2,3)  =>  M(i * Width + k) = M(2*4+3) = 
M(11) 



Step 1: Matrix Multiplication 

A Simple Host Version in C 
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// Matrix multiplication on the (CPU) host in double precision 

void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 

{    

    for (int i = 0; i < Width; ++i)‏ 

        for (int j = 0; j < Width; ++j) { 

            double sum = 0; 

            for (int k = 0; k < Width; ++k) { 

                double a = M[i * width + k]; 

                double b = N[k * width + j]; 

                sum += a * b; 

            } 

            P[i * Width + j] = sum; 

        } 

} 



Step 2: Input Matrix Data Transfer 
(Host-side Code)‏ 
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 
   int size = Width * Width * sizeof(float);  

   float* Md, Nd, Pd; 

   … 

1. // Allocate and Load M, N to device memory  

    cudaMalloc(&Md, size); 

    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

 

     cudaMalloc(&Nd, size); 

     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

 

     // Allocate P on the device 

    cudaMalloc(&Pd, size); 

 

 



Step 3: Output Matrix Data Transfer 
(Host-side Code)‏ 
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2.   // Kernel invocation code – to be shown later in Step 5 

     … 

 

3.    // Read P from the device 

      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

 

       // Free device matrices 

      cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 

     } 

 



Step 4: Kernel Function 
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// Matrix multiplication kernel – per thread code 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏ 

{ 

    // Pvalue is used to store the element of the matrix 

    // that is computed by the thread 

    float Pvalue = 0; 

 

   for (int k = 0; k < Width; ++k)‏ { 

       float Melement = Md[threadIdx.y*Width+k]; 

       float Nelement = Nd[k*Width+threadIdx.x]; 

       Pvalue += Melement * Nelement; 

   } 

 

  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 

} 

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)
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Step 5: Kernel Invocation 

(Host-side Code)  
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 // Setup the execution configuration 

       dim3 dimGrid(1, 1); 

       dim3 dimBlock(Width, Width); 

 

 

    // Launch the device computation threads! 

    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 



Only One Thread Block Used 
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 One Block of threads compute matrix Pd 
 Each thread computes one element of Pd 

 

 Each thread 
 Loads a row of matrix Md 

 Loads a column of matrix Nd 

 Perform one multiply and addition for each pair of Md 
and Nd elements 

 Compute to off-chip memory access ratio close to 
1:1  

 

 Size of matrix limited by the number of threads 
allowed in a thread block. 
 

 All threads access global memory for their input 
matrix elements 

 Two memory accesses (8 bytes) per floating point 
multiply-add 

 4B/s of memory bandwidth/FLOPS 
 4*346.5 = 1386 GB/s required to achieve peak 

FLOP rating 
 86.4 GB/s limits the code at 21.6 GFLOPS 

 The actual code runs at about 15 GFLOPS 

 Need to drastically cut down memory accesses to 
get closer to the peak 346.5 GFLOPS 

 
 

 



Using Tiles and Multiple Blocks 
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 Break up the execution of the kernel into phases so that the data 

accesses in each phase is focused on one subset (tile) of Md and 

Nd. 

 

 Each block computes one square sub-matrix Pdsub of size 

TILE_WIDTH and so a Ndsub and Mdsub can be loaded to the block 

shared memory for faster access than using the Global memory. 

 

 Each thread computes one element of sub-matrix Pdsub 

 

 For more details on the code details and on using the optimal 

block size please read chapters 4 & 5 in [1]. 

 



Current trends in the GPGPU research 

(Cloud computing, DBMS and Data Mining, Networks and Security) 
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Cloud Computing 
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 GPGPU Virtualization:  

Sharing GPU power between  

users in the cloud with a  

pay-as-you-go strategy. 

 

 Amazon EC2 Cluster GPU instances [6] 

  

 Zillians GPU Virtualization [7] 

 

 GPU virtualization on VMware's hosted I/O architecture [8] 

 

 GPU Cluster for High Performance Computing [9] 

 

 Supporting GPU sharing in cloud environments with a transparent 

runtime consolidation framework [10] 

 

 

 



DBMS and Data Mining 
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 Mars: Accelerating MapReduce with Graphics Processors [11] 

 

 A New PostgreSQL Procedural Language  

 Unlocking the Power of the GPU [12] 

 

 Hardware acceleration in commercial databases:  

 a case study of spatial operations [13] 

 

 GPUQP: Query Co-Processing  

 Using Graphics Processors [14] 

 

 

 



Network and Security 
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 GPU packet classification using OpenCL: a consideration of viable classification methods [15] 

 

 Parallel packet classification using GPU co-processors [16] 

 

 Efficient GPGPU-Based Parallel Packet Classification. [17] 

 

 Acceleration of packet filtering using gpgpu [18] 

 

 Research into GPU accelerated pattern matching for applications in computer security [19] 

 

 Hermes: an integrated CPU/GPU microarchitecture for IP routing [20] 

 

 PacketShader: a GPU-accelerated software router [21] 



Quiz 
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 Now after knowing everything about the massive processing power of 

GPUs. 

 Mention a problem that using GPUs would help. 



CUDA 

02-Apr-12 
Cloud Computing Reading Group @ Cairo 

University 43 

 Toolkit 

 http://developer.nvidia.com/cuda-downloads 

 

 List of CUDA enabled GPUs : 
http://developer.nvidia.com/cuda-gpus 

 

 If you find this topic interesting to you, I recommend 
reading the book in reference 1 and checking the 
course in  http://courses.engr.illinois.edu/ece498/al/ 

 

 

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://courses.engr.illinois.edu/ece498/al/
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