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Abstract 1 
Recently, Hadoop, an open source implementation 
of MapReduce, has become very popular due to 
its characteristics such as simple programming 
syntax, and its support for distributed computing 
and fault tolerance. Although Hadoop is able to 
automatically reschedule failed tasks, it is 
powerless to deal with tasks with poor 
performance. Managing such tasks is vital as they 
lower the whole job's performance. Thus in this 
work, we design a novel garbage collection 
technique that identifies and collects “garbage” 
tasks. Three research questions are addressed in 
this work. The first, does collecting (shutting 
down) garbage (slow) tasks help in reducing the 
total job completion time and resources cost? The 
second, when is it most efficient to invoke the 
Garbage Collector?  The third, how to identify 
garbage (slow) tasks and what are the major 
factors causing a task to slow down?. The 
proposed Garbage Collector is evaluated on 
Amazon EC2 using two metrics: (i) the time for a 
single job completion, and (ii) resource costs. The 
empirical results using the TeraSort benchmark 
show that collecting garbage tasks does reduce the 
job completion time by 16% and resources cost by 
27%. The results also show that the Garbage 
Collector needs to be invoked before the job is 
40% completed, otherwise it would be better to 
leave the slow tasks till the end of the job because 
at this point the cost of re-executing these slow 
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tasks becomes high. Finally, our results show that 
CPU utilization is a good indicator of slow tasks. 
 

1 Introduction 
There are numerous recent examples of the 
benefits obtained from analyzing the large data 
sets produced by today’s applications. Internet 
services such as e-commerce websites and social 
networks generate click-stream data from millions 
of users every day. Understanding patterns in 
these enormous volumes of data means increased 
advertising revenue. Also, analyzing the huge 
amount of logs generated by users’ actions in a 
timely manner indicates that developers and 
operators can operate more efficiently in 
diagnosing problems in production. In the Big 
Data era, the volume of data that needs to be 
processed and analyzed has led to an increasing 
interest in parallel processing on commodity 
clusters. 

The MapReduce framework, which was originally 
developed at Google [1], is the pioneer in parallel 
processing for enormous data sets. Features such 
as elastic scalability and fine-grained fault 
tolerance contributed to its wide adoption. Google 
for instance uses its MapReduce framework to 
process 20 petabytes of data per day [1]. Hadoop 
[2], an open source implementation of MapReduce 
developed by Yahoo!, is in use by many 
organizations like Facebook, Twitter and Yahoo! 
[11].  

While Hadoop offers elastic scalability and fine-
grained fault tolerance, it lacks strength in dealing 
with slow tasks, which has become a stumbling 
block to its performance. Its strategy for dealing 
with slow tasks is to activate several speculative 
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tasks when detecting some tasks running slower 
than others in the job. Hadoop provides an option 
to launch duplicates of slow tasks on different 
nodes, with the hope that they will finish faster 
than the original slow tasks. The motivation for 
this feature is that it has been found that every job 
has stragglers- a small percentage of tasks that are 
significantly slower than the rest [2]. These slow 
tasks increase the overall execution time of the 
job. These stragglers typically appear due to 
hardware problems. The speculative task 
mechanism trades resources for speed which 
might not always be the best option.  

In order to speed up Hadoop without the increased 
resource costs, we propose a “Garbage Collector”, 
which is based on the idea of “garbage collection” 
in the Java Virtual Engine [3]. In the world of 
Java, a garbage collector is used for automatic 
memory space management. But, in this paper, 
“garbage collection” refers to reaping Hadoop 
tasks with poor performance automatically. These 
collected tasks are then moved on faster nodes. 
Generally speaking, the proposed “Garbage 
Collector” acts as an assistant to the Hadoop 
scheduler to make more efficient use of the 
computing resources.  

Two contributions are made in this work. First of 
all, we expand the meaning of “Garbage 
Collection” and use it to identify “garbage” tasks. 
Second, we propose using Garbage Collection to 
help Hadoop maintain better performance through 
collecting garbage tasks before they affect the 
overall job’s efficiency.   

The remainder of this paper is organized as 
follows. After introducing MapReduce and 
Hadoop in Section 2, we define the downfalls of 
the current implementation in Section 3. Section 4 
covers the Garbage Collector design. Our 
experimental environment and results are 
presented in Section 5. In Sections 6 and 7, we 
discuss related work, and present our conclusions 
and future work, respectively. 

2 Background 
Before defining the problem, we first present a 
brief introduction to the basic MapReduce and 
Hadoop frameworks. MapReduce is a runtime 
system that allows parallel execution of tasks over 
a cluster of nodes. MapReduce takes two input 
functions (Map and Reduce) written by the 

programmer. The Map function processes input 
data to generate intermediate data in the form of 
<key, value> tuples. The Reduce function then 
merges the values associated with a key. Each of 
the Map and Reduce functions are then executed 
in parallel over a set of distributed data files in a 
Single Program Multiple Data (SPMD) paradigm. 
Data files are stored on a distributed file system 
such as Google File System (GFS) [12] or Hadoop 
Distributed File System (HDFS) [13]. MapReduce 
is constructed of three phases, Map, Shuffle, and 
Reduce, where the phases are executed semi-
sequentially and each  phase utilizes all the nodes 
in the MapReduce cluster. 

In the Map phase, the programmer-provided Map 
function is executed in parallel over the cluster. 
Input data is divided into chunks and stored in a 
distributed file system. Each Map task reads some 
number of chunks and generates intermediate data 
which is used as an input to the Reduce phase. 
Intermediate data is then partitioned into a number 
of chunks and stored locally on the nodes that 
generated them. 

In the Shuffle phase, intermediate data chunks are 
moved from the local storage of the Map nodes to 
the appropriate Reduce node. In this phase, tuples 
are grouped on the key field and then all tuples for 
a particular key are sent to a single Reduce task. A 
Reduce task may process more than one key since 
usually the number of keys is much more than the 
number of Reduce tasks. This phase requires an 
all-Map-to-all-Reduce communication pattern, 
thus it heavily utilizes the network. 

In the Reduce phase the programmer-provided 
Reduce function is executed in parallel over the 
cluster. The output of this phase is then stored on 
the distributed file system. In case of multi-stage 
MapReduce, this output is used as an input for the 
next MapReduce stage. 

The MapReduce runtime system automatically 
partitions the input data, schedules the Map tasks 
across the nodes, runs the Shuffle, schedules the 
Reduce tasks, and re-executes computations when 
nodes fail. MapReduce tracks the execution status 
of nodes and assigns new tasks to free nodes 
considering data locality. MapReduce 
speculatively creates backup copies of straggler 
tasks and terminates all outstanding copies when 
one copy finishes. Straggler tasks are defined as 
tasks that take an unusually long time to execute 
and delay the completion of a phase. 



 
 

Hadoop, the MapReduce implementation, has a 
single JobTracker (Master) managing a number of 
TaskTrackers (Slaves). The JobTracker is 
responsible for scheduling and monitoring jobs 
across the cluster. JobTracker tasks include 
detecting and tagging failed or slow jobs, 
duplicating slow executions, and restarting failed 
ones. Input data which resides on a HDFS is split 
into even-sized chunks.  

Hadoop divides each job into a set of tasks. Each 
chunk of input is first processed by a Map task, 
which outputs a list of key-value pairs generated 
by a programmer-defined Map function. Map 
outputs are split into buckets based on key. When 
Maps are finished, Reduce tasks apply a reduce 
function to the list of Map outputs with each key. 
Hadoop runs several Maps and Reduces 
concurrently on each TaskTracker – two of each 
by default – to overlap computation and I/O [4]. 
Each TaskTracker tells the JobTracker when it has 
empty task slots. The scheduler then assigns it 
more tasks.  

Hadoop’s scheduler makes several implicit 
assumptions [4]. The first assumption is that nodes 
can perform work at the same rate and tasks 
progress at a constant rate throughout time. This 
assumption is not valid in a virtualized 
environment as other VMs running on the same 
physical machine can affect the performance of 
nodes and tasks. The second assumption is that a 
task’s progress is approximately equal to its 
percent completion. Tasks whose progress 
deviates from the normal progress for a phase by 
more than a static threshold are considered to be 
slow tasks. This assumption is also not valid 
because a task consists of a number of phases and 
some of these phases (ex. processing data) execute 
faster than others (ex. reading data from storage). 
So with these assumptions, Hadoop will 
incorrectly identify a task in the reading phase as a 
slow task if the other tasks have started working 
on the processing phase. This is not necessarily 
correct since the slow task could catch up with the 
other tasks once it finishes the read phase.  

3 Problem Definition 
In this section, we illustrate the downfalls of the 
current implementation of Hadoop and their effect 
on the overall job performance.   

• A Reduce task can only start after a set of 
Map tasks finish and generate the 
intermediate data.  Thus, if some Map tasks in 
this set suffer poor performance, then this will 
delay the Reduce task execution which will 
affect the total job completion time. 

• In Hadoop, speculative execution is used to 
support fault tolerance. The JobTracker keeps 
track of all scheduled tasks. The speculative 
tasks, which are launched when Hadoop finds 
the task is unusually slow compared with 
others of the same job, will process the same 
input data with the hope that it will complete 
much earlier than the original one. 
Speculative task mechanism trades resources 
for speed. The number of Speculative tasks 
should be minimized to maximize efficiency. 
The current default mechanism fails to pay 
attention to the number of speculative tasks 
which increases the cost.  

• Speculative tasks are activated only when 
certain conditions are met. For instance, there 
should be no previously running speculative 
tasks, most of the job’s tasks are finished, and 
a task must be less than 20% completed after 
running for 60 seconds. As far as we know, 
this algorithm suffers from many problems. 
One of the problems is that there is a 
possibility that some task might run fast at the 
beginning but then slow down or even get 
blocked when it is almost finished. This 
problem is beyond the scope of the above 
algorithm. Another problem is that the 
speculative task mechanism does not allow 
clients to configure the speculative time gap 
and percentage of job complication, making 
the mechanism inflexible to the different jobs 
needs.   

• With the current Hadoop’s scheduler 
assumptions, tasks can be wrongly identified 
as slow tasks due to the method used for 
calculating tasks’ progress and the use of 
static threshold. 

• Since Map tasks access the input data chunks 
over the distributed file system, replicating 
slow tasks (running a speculative copy of this 
task on another node) will increase the 
network usage, which can lead to the network 
becoming a bottleneck.  



 
 

The goals of this work are to determine if shutting 
down slow tasks instead of replicating them 
(speculative tasks) can be more efficient. We then 
determine the deadline for shutting down these 
slow tasks. We only address the problem of slow 
tasks and leave faulty tasks to Hadoop’s scheduler.  

4 Garbage Collector Design 
The Java garbage collector is used to manage 
memory space automatically. Before releasing an 
object’s memory space, the garbage collection 
thread invokes a specific method to perform any 
sort of cleanup required. In normal operation, the 
garbage collector runs concurrently with the 
applications. It is able to do most of its work while 
the application is paused and completes when all 
the application threads have stopped. 
In this paper, we propose to use the idea of the 
“Garbage Collector” to reap the slow tasks in 
Hadoop and allocate them seamlessly on faster 
nodes. 
 

 
Figure 1. Garbage Collector Design 

 

In fig.1, we illustrate the high level design of the 
proposed Garbage Collector. The Garbage 
Collector consists of a main engine which resides 
on the Master node and a set of monitors on the 
Slave nodes. Having the engine on the Master 
node allows it to collect the information reported 
to the JobTracker from the TaskTrackers and also 
allows it to command the JobTracker to take 
actions towards the slow tasks. The Garbage 
Collector monitors on the slave nodes collect the 

CPU, Memory and I/O utilization and report back 
to the Garbage Collector engine on the Master 
node. 
The Garbage Collector can be either implemented 
as a separate application that communicates with 
Hadoop using APIs or it can be implemented as a 
part of the Hadoop scheduler. Each method has its 
own advantages and disadvantages. The separate 
application approach is easier and faster to 
implement. However, it is limited to the 
functionalities and performance reports provided 
by Hadoop APIs and presents an extra deployment 
step for the Hadoop users. On the other hand, 
implementing the Garbage Collector as a part of 
Hadoop scheduler is more difficult but makes it 
easier to deploy and provides the Garbage 
Collector with more performance information, 
allowing it to make more informed decisions. 
In the next section, we run a set of experiments to 
identify the key factors the Garbage Collector 
must consider while making decisions to collect a 
garbage node.  

5 Evaluation and Analysis 
We used Amazon EC2 and Hadoop 1.0.4 stable 
release running on Ubuntu 12.04.1 LTS to analyze 
the effectiveness of the proposed Garbage 
Collector. Two Hadoop virtual clusters were built 
to make sure that the results are not affected by the 
state of the cloud hardware. Each cluster consists 
of 6 “small”-size VMs. One VM (Master VM) 
acts as the JobTracker/NameNode while the rest 
(Slave VMs) are TaskTrackers/DataNodes. The 
Master VM is also running a 
TaskTracker/DataNode, so in total we have 6 
TaskTrackers/DataNodes. Each data block is 
replicated on 2 other nodes. “Small”-size EC2 
VMs were used running with 1.7 GB of memory, 
1 virtual core 1.0-1.2 GHz, and 8GB of disk space.  

In order to simulate slow nodes, we ran CPU, 
memory and disk intensive processes on one of the 
nodes [4]. The Ubuntu Stress package [10] was 
used to create the workload to slow down one of 
the cluster nodes. The Stress workload we used is 
1000 workers spinning on sqrt()to consume 
CPU, 50 workers spinning on 
malloc()/free() to consume Memory and 
50 workers spinning on write()/unlink() 
to consume disk. 



 
 

As for the workload benchmark, we used the 
TeraSort benchmark bundled with the Hadoop 
distribution. TeraSort benchmark is the main 
benchmark used for evaluating Hadoop at Yahoo! 
and it combines testing of both the HDFS and 
MapReduce layers of the Hadoop cluster. Input 
data of 1GB was generated and used in the 
evaluation phase. The job was split to 400 Map 
tasks and 50 Reduce tasks. All results reported 
here present the mean and the 95% Confidence 
Interval values of running the benchmark 5 times. 
Resource cost is calculated according to the 
following formula: 
 
 

C =  P ×  (∑ 𝑇𝑓𝑁𝑓 + ∑ 𝑇𝑠𝑁𝑠 )  (1) 

 

 C is the resource cost required to complete the 
job. P is the VM price per hour. Nf and Ns are the 
number of fast and slow nodes respectively. Tf and 
Ts are the running time of fast and slow nodes 
respectively. In all scenarios in our experiments, 
we either had one or no slow nodes, so Ns is either 
0 or 1. 

Experiment 1 
Objective: How is Hadoop’s performance 
affected by enabling or disabling speculative 
tasks? Do speculative tasks improve Hadoop’s 
speed? 
In a cloud computing environment, tasks may be 
slow for various reasons, including hardware 
degradation, software misconfiguration, etc. In 
this experiment, we slow down one of the five 
slave VMs by consuming CPU resources to 
simulate a “busy” node. 

 
Figure 2: Time to finish the job with speculative 

on and off. 

Speculative execution can be enabled or disabled 
independently for Map tasks and Reduce tasks, on 
a cluster-wide basis, or on a per-job basis. These 
configurations are related to two variables: 
mapred.map.tasks.speculative.execution and 
mapred.reduce.tasks.speculative.exeuction 
in the mapred-site.xml configuration file.  
Judging from fig. 2, it is hard to tell if the 
speculative configuration is helpful in speeding up 
Hadoop. This situation could be due to several 
factors. First, our experiment is done with 6 small 
size VMs with 1GB of data to sort, so the 
advantage of the speculative mechanism might be 
hidden in such a configuration. Second, the goal of 
speculative execution is to reduce job execution 
time, but this comes at the cost of cluster 
efficiency. On a busy cluster, speculative 
execution can reduce overall throughput. 
However, executing redundant tasks does bring 
down the execution time for a single job. 
 

Experiment 2 
Objective: Does collecting (shutting down) 
garbage (slow) tasks help in reducing the total job 
completion time and resource cost? 
In this experiment, we created three scenarios:  
1. Baseline Scenario: In this scenario, we run 

Hadoop and do not run the Stress workload on 
any of the slaves. Thus, this scenario shows 
Hadoop’s performance in the case of no slow 
tasks and presents the best case scenario 
where all tasks run as fast as they can.  

2. Slow Node Scenario: In this scenario, we run 
Hadoop and run the Stress workload on one of 
the slaves to slow it down. Studying the 
effects of having multiple slow nodes is left 
for future research. In this scenario, we do not 
run the Garbage Collector and allow Hadoop 
to use its default speculative execution model 
to handle the slow tasks.  

3. Garbage Collector Scenario: In this 
scenario, we run Hadoop, run the Stress 
workload on one of the slaves to slow it down 
and run the Garbage Collector to collect the 
slow tasks. The Garbage Collector is 
configured to collect the slow tasks after the 
job runs for 2 minutes.  
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Figure 3. Job Completion Time for Baseline, Slow 

Node and Garbage Collector Scenarios. 
 
From fig.3, we can see that, when dealing with 
slow tasks, the current Hadoop implementation 
(slow node with speculative tasks scenario) can 
cause a 40% increase in the job completion time 
compared to the baseline scenario. This increase 
was 7 minutes in our experiment representing 1.4 
folds of the execution time of the baseline 
scenario. On the other hand, collecting (shutting 
down) slow tasks in the first 2 minutes (Garbage 
collector scenario) causes only a 16.7% increase in 
the job completion time - only added 3 minutes - 
to the baseline scenario execution time. Thus, the 
Garbage Collector is actually reducing the job 
completion time in the presence of slow node 
compared to the speculative tasks mechanism. 
With the Garbage Collector, instead of waiting for 
the slow tasks to complete, the Garbage Collector 
kills these tasks and forces Hadoop’s scheduler to 
re-schedule them on faster nodes. 
 
Shutting down the slow node reduces the number 
of VMs being used and thus reduces the total 
resource cost making collecting slow nodes more 
cost efficient than keeping them running slowly. 
For the job cost, as calculated with Equation 1, fig. 
4 shows that using the Garbage Collector would 
save 40% of the cost compared to leaving the slow 
tasks running till the end of the job. Using the 
Garbage Collector keeps the cost almost the same 
as the baseline case in which there are no slow 
nodes.  
 
 

 
Figure 4. Job Completion Cost for Baseline, Slow 

Node and Garbage Collector Scenarios. 
 
In fig. 5, we repeat experiment 2 but in a larger 
cluster of one master and 12 slaves using 1GB of 
data to sort and one slow node. As illustrated in 
the fig. 5, the Garbage Collector still yields better 
performance than leaving Hadoop to handle the 
slow node. Comparing the results of a 12 node 
cluster with that of 6 node cluster, we find that the 
effect of a slow node on the job completion time 
in the large cluster is worse than that in the small 
cluster. In the larger case, the effect of a slow node 
on the job completion time increased from 40% to 
100%. The reason behind this increase is that 
more nodes need to wait for the slow Map tasks to 
finish so that the Shuffle phase can complete and 
the Reduce phase can start. In the large cluster, the 
effect of the Garbage Collector on the job 
completion time also increased and it helped to 
reduce the job completion time by 19% compared 
to 16% in the small cluster. 
 

 
Figure 5. Job Completion Time for Baseline, Slow 

Node and Garbage Collector Scenarios with 12 
nodes and 1 slow node. 



 
 

We conclude from this experiment that collecting 
(shutting down) slow tasks - and thus nodes-  is 
more efficient than leaving them running slowly 
till the end of the job both in terms of job 
completion time and job resources cost. 

Experiment 3 
Objective: When is it most effective to invoke the 
Garbage Collector to shut down slow tasks in 
order to minimize the job completion time and 
resource cost? 
In this experiment, we run the Stress workload on 
one of the slaves to slow it down and evaluate the 
effectiveness of the Garbage Collector when 
invoked at different job completion percentages. 
We used the average of the job completion times 
from the three scenarios reported in experiment 2 
as the estimated job completion time to calculate 
the job completion percentage in this experiment. 
We ran a set of scenarios, invoking the Garbage 
Collector from when the job was 10% completed 
to when it was 90% completed. The effect of 
invoking the Garbage Collector on the Job 
completion time and job resources cost compared 
to not invoking the Garbage Collector at all (Y=0) 
are reported in fig. 6 and fig. 7, respectively. 

 
Figure 6. Impact of Garbage Collector Invocation 

Threshold on Job Completion Time.  
 

In terms of the job completion time, fig. 6 
illustrates that the Garbage Collector needs to be 
invoked before the job is 40% completed. 
Invoking the Garbage Collector after that caused 
an increase in the job completion time because at 
this point the Garbage Collector is collecting tasks 
that are almost finished and thus the generated 
intermediate data is lost. From the figure we can 
deduce that if the Garbage Collector was not 
invoked before the job is 40% completed, then to 
minimize the job completion time, it is better to 

keep the slow tasks running till the job is 
completed (100%). Otherwise, the job takes longer 
to finish. 
In terms of the resource cost required to complete 
the job, fig. 7 illustrates that the Garbage Collector 
needs to be invoked before the job is 50% 
completed. Invoking the Garbage Collector after 
that caused an increase in the resource cost. 

 
Figure 7. Impact of Garbage Collector Invocation 

Threshold on Job Completion Cost.  
 

We conclude from this experiment that, in general, 
there is a point at which it is essential to collect 
(shut down) the slow tasks in order to save time. 
In our experiments using the TeraSort benchmark, 
that point is before the job is 40% completed. If 
that is not possible, then it is better to keep the 
slow tasks running till the job is completed. 
Similarly, in general there is another point at 
which the slow jobs should be collected if the 
main objective is to reduce the resources cost and 
a slower job completion can be tolerated. In our 
experiments that point is before the job is 50% 
completed, thus giving more time to do the 
analysis to identify slow tasks before starting to 
collect them. To generalize these results, we are 
planning on repeating this experiment using a set 
of different workload benchmarks to determine 
how the workload type affects the collection point 
and to deduce guidelines for selecting the 
collection points. 
 

Experiment 4 
Objective: How to identify garbage tasks? What 
is the perfect time to say that a task is being slow 
and what are the major factors causing a task to 
slow down? 



 
 

Instead of monitoring individual tasks, we monitor 
the whole node’s utilization. Node utilization 
presents a faster, less complex metric with 
available history that can be checked before even 
submitting the tasks. In this experiment, we 
consider the virtual machine CPU, Memory and 
Disk utilizations. To evaluate the effect of the 
utilization of the different components on the job 
completion time, we consider 4 scenarios: 
1. No Stress Workload Scenario: In this 

scenario, no Stress workloads are running (i.e. 
no slow nodes). This scenario presents the 
baseline for comparison. 

2. CPU Stress Workload Scenario: In this 
scenario, we run 10,000 CPU workers on one 
of the slaves to cause the CPU to become a 
bottleneck. 

3. Memory Stress Workload Scenario: In this 
scenario, we run 50 Memory workers on one 
of the slaves to cause Memory to become a 
bottleneck. 

4. Disk Stress Workload Scenario: In this 
scenario, we run 10,000 Disk workers on one 
of the slaves to cause Disk access to become a 
bottleneck. 

 
Figure 8. Effect of the different types of Stress 

workloads on the Job Completion Time. 
 

In this experiment, we work on identifying the 
bottleneck resource for a job and then use it to 
determine the slow tasks. The results of this 
experiment, represented in fig.8, show that CPU 
contention had the largest effect on slowing the 
tasks down. CPU contention can be caused by 
other applications using the CPU or be due to 
memory thrashing.  
Using the ratio between the CPU usage of the task 
and the VM CPU utilization can be a good 

indicator of a task running slow. A high ratio 
would indicate that the task is running as fast as 
possible and consuming the CPU, in this case, the 
garbage collector will not consider this as a slow 
task. On the other hand, a low ratio would indicate 
that the CPU time is being consumed by 
something other than the task, making the task run 
slow. In this case, the garbage collector will flag 
this task as a slow task and collects it. More 
investigation still needed in this point to determine 
the threshold that differentiates between high and 
low ratios.  
The effects of CPU and memory were expected; 
however, what came as a surprise was that Disk 
contention only causes 10% increase in the job 
completion time. This might be a result of having 
a large memory in our experiments that increased 
the memory hit rate, thus there was no much need 
to load data from disk. 
As a conclusion from the three last experiments, 
we deduce that, for our experimental scenarios, 
allowing Hadoop to monitor the CPU utilization 
ratio on the TaskTracker nodes and using a CPU 
utilization ratio threshold to identify garbage tasks 
before the job is completed with a certain 
percentage can indeed save time and reduce cost.  
 

6 Related Work 
Hadoop’s performance is closely tied to its task 
stragglers. Thus, a number of studies have 
investigated how to minimize the effect of poor 
performance nodes and tasks on the overall job 
performance. However, the problem of finding the 
optimal way to identify slow tasks and efficiently 
migrate the processed data in a cost effective 
manner is still unsolved.  
Hadoop assumes that cluster nodes are 
homogeneous and tasks are executed linearly. This 
assumption is then being used to decide when to 
active speculatively tasks for the stragglers. 
However, homogeneity might not be true in 
practice because of the use of different hardware 
and virtualized resources. LATE [4] is the first 
work to point out and address the short-comings of 
MapReduce in heterogeneous environments 
(virtualized data centers included).  LATE, which 
stands for Longest Approximate Time to End, 
focuses specifically on managing slow tasks. The 
study showed that the current slow task 



 
 

management techniques lead to poor performance 
in heterogeneous clusters and proposed a new 
robust scheduling algorithm for identifying, 
prioritizing, and scheduling backup copies for 
slow tasks. LATE focuses on estimate time left 
rather than progress rate. It is supposed to execute 
only tasks that will improve job response time, 
rather than any slow tasks. LATE claims to have 
reduced Hadoop’s response time by a factor of 
two. 
SAMR [5], Self-Adaptive MapReduce, extends 
LATE by calculating the progress of tasks 
dynamically and adapting to the continuously 
varying environment automatically. It deals with 
the Map and Reduce phases separately and 
specifies several new parameters for self-adaption. 
Tarazu [9] enhances the performance by 
implementing a communication-aware scheduling 
and load balancing to reduce network traffic when 
replicating slow tasks. 
These techniques relies on scheduling backup 
copies of the slow tasks while keeping the slow 
tasks running, the Garbage Collector on the other 
hand, relies on shutting down the slow tasks and 
allowing the default Hadoop scheduler to 
reschedule them. By shutting down slow tasks, the 
slave becomes free to serve other tasks instead of 
being locked to a slow task. Also, by not creating 
backup tasks, the load (number of tasks to serve) 
is reduced, thus decreasing the job cost. An 
empirical comparison is needed to compare these 
different techniques and is left for future work. 
The Garbage Collector still can utilize the 
advanced task progress calculations provided by 
these techniques for a better estimation of the time 
left for a task to complete. This can help the 
Garbage Collector to better decide when to be 
invoked to collect the slow tasks. 
ISS [7] protects data generated by Map tasks 
(intermediate data) against node failures by 
replicating locally-consumed data online. Mantri 
[6] extends the ISS idea and provides a broader 
solution that replicates task output based on the 
probability of data loss and the recursive cost of 
re-computing inputs. Mantri is also considered the 
first study on a large production MapReduce 
cluster of thousands of servers as it was deployed 
by Microsoft Bing search engine. RAFT [8] 
proposed using piggy-backs checkpoints to persist 
intermediate results at several points in time to 
deal with multiple node failures. Thereby, RAFT 

can re-compute intermediate data instead of re-
executing the task. 
The Garbage Collector would benefit in terms of 
reducing the re-execution time of slow tasks, if 
integrated with one of these techniques to preserve 
the data processed before the slow node was 
collected. This data can then be excluded from 
being processed again when the slow task is re-
executed.  

7 Conclusions and Future 
Work 

In this paper, we proposed a Garbage Collector to 
collect garbage (slow) tasks in Hadoop. We 
evaluated the hypothesis that collecting (shutting 
down) these garbage tasks can save time and 
reduce cost. We used Amazon EC2 to build two 
Hadoop virtual clusters to evaluate our hypothesis. 
The empirical results using the TeraSort 
benchmark show that collecting garbage tasks 
does indeed save time and reduce cost but only if 
the Garbage Collector is invoked before the job is 
40% completed. Otherwise, it is more efficient -
both in terms of time and cost- to keep these 
garbage tasks running till the job is completed. 
The results also show that a CPU utilization ratio 
threshold on the TaskTracker nodes is a good 
method to detect if tasks are going to run slowly.  
The design of our initial experiments is coarse 
grained. More in-depth investigation with a larger 
set of workload benchmarks is still needed to 
detect accurately the appropriate time for invoking 
the “Garbage Collector”. Our current results 
indicate that it is worthwhile improving Hadoop’s 
speculative task mechanism and “Garbage 
Collector” might be the cure. In our experiment, 
we only used Hadoop clusters of 6 and 12 small 
size VMs. However, we are looking forward to 
extend our experiment on a larger cluster. 
For the future work, we plan to integrate the 
Garbage Collector engine and monitor with the 
JobTracker and TaskTracker respectively. We also 
plan to study the effects of having multiple slow 
nodes per cluster on the Garbage Collector 
performance. Finally, we plan to combine the 
Garbage Collector with one of the intermediate 
data reservation techniques (ISS [7], Mantri [6] or 
RAFT [8]) introduced in the related work section 
to see if this would reduce the time and cost 
further. 
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