

MapReduce “Garbage” Collection

Shady Khalifa, Tianbin Jiang, Patrick Martin
School of Computing
Queen’s University

ON, Canada
{khalifa, jiang, martin}@cs.queensu.ca

Abstract 1
Recently, Hadoop, an open source implementation
of MapReduce, has become very popular due to
its characteristics such as simple programming
syntax, and its support for distributed computing
and fault tolerance. Although Hadoop is able to
automatically reschedule failed tasks, it is
powerless to deal with tasks with poor
performance. Managing such tasks is vital as they
lower the whole job's performance. Thus in this
work, we design a novel garbage collection
technique that identifies and collects “garbage”
tasks. Three research questions are addressed in
this work. The first, does collecting (shutting
down) garbage (slow) tasks help in reducing the
total job completion time and resources cost? The
second, when is it most efficient to invoke the
Garbage Collector? The third, how to identify
garbage (slow) tasks and what are the major
factors causing a task to slow down?. The
proposed Garbage Collector is evaluated on
Amazon EC2 using two metrics: (i) the time for a
single job completion, and (ii) resource costs. The
empirical results using the TeraSort benchmark
show that collecting garbage tasks does reduce the
job completion time by 16% and resources cost by
27%. The results also show that the Garbage
Collector needs to be invoked before the job is
40% completed, otherwise it would be better to
leave the slow tasks till the end of the job because
at this point the cost of re-executing these slow

Copyright © 2013 Shady Khalifa, Tianbin Jiang, and
Patrick Martin. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

tasks becomes high. Finally, our results show that
CPU utilization is a good indicator of slow tasks.

1 Introduction
There are numerous recent examples of the
benefits obtained from analyzing the large data
sets produced by today’s applications. Internet
services such as e-commerce websites and social
networks generate click-stream data from millions
of users every day. Understanding patterns in
these enormous volumes of data means increased
advertising revenue. Also, analyzing the huge
amount of logs generated by users’ actions in a
timely manner indicates that developers and
operators can operate more efficiently in
diagnosing problems in production. In the Big
Data era, the volume of data that needs to be
processed and analyzed has led to an increasing
interest in parallel processing on commodity
clusters.

The MapReduce framework, which was originally
developed at Google [1], is the pioneer in parallel
processing for enormous data sets. Features such
as elastic scalability and fine-grained fault
tolerance contributed to its wide adoption. Google
for instance uses its MapReduce framework to
process 20 petabytes of data per day [1]. Hadoop
[2], an open source implementation of MapReduce
developed by Yahoo!, is in use by many
organizations like Facebook, Twitter and Yahoo!
[11].

While Hadoop offers elastic scalability and fine-
grained fault tolerance, it lacks strength in dealing
with slow tasks, which has become a stumbling
block to its performance. Its strategy for dealing
with slow tasks is to activate several speculative

mailto:iang,%20martin%7d@cs.queensu.ca

tasks when detecting some tasks running slower
than others in the job. Hadoop provides an option
to launch duplicates of slow tasks on different
nodes, with the hope that they will finish faster
than the original slow tasks. The motivation for
this feature is that it has been found that every job
has stragglers- a small percentage of tasks that are
significantly slower than the rest [2]. These slow
tasks increase the overall execution time of the
job. These stragglers typically appear due to
hardware problems. The speculative task
mechanism trades resources for speed which
might not always be the best option.

In order to speed up Hadoop without the increased
resource costs, we propose a “Garbage Collector”,
which is based on the idea of “garbage collection”
in the Java Virtual Engine [3]. In the world of
Java, a garbage collector is used for automatic
memory space management. But, in this paper,
“garbage collection” refers to reaping Hadoop
tasks with poor performance automatically. These
collected tasks are then moved on faster nodes.
Generally speaking, the proposed “Garbage
Collector” acts as an assistant to the Hadoop
scheduler to make more efficient use of the
computing resources.

Two contributions are made in this work. First of
all, we expand the meaning of “Garbage
Collection” and use it to identify “garbage” tasks.
Second, we propose using Garbage Collection to
help Hadoop maintain better performance through
collecting garbage tasks before they affect the
overall job’s efficiency.

The remainder of this paper is organized as
follows. After introducing MapReduce and
Hadoop in Section 2, we define the downfalls of
the current implementation in Section 3. Section 4
covers the Garbage Collector design. Our
experimental environment and results are
presented in Section 5. In Sections 6 and 7, we
discuss related work, and present our conclusions
and future work, respectively.

2 Background
Before defining the problem, we first present a
brief introduction to the basic MapReduce and
Hadoop frameworks. MapReduce is a runtime
system that allows parallel execution of tasks over
a cluster of nodes. MapReduce takes two input
functions (Map and Reduce) written by the

programmer. The Map function processes input
data to generate intermediate data in the form of
<key, value> tuples. The Reduce function then
merges the values associated with a key. Each of
the Map and Reduce functions are then executed
in parallel over a set of distributed data files in a
Single Program Multiple Data (SPMD) paradigm.
Data files are stored on a distributed file system
such as Google File System (GFS) [12] or Hadoop
Distributed File System (HDFS) [13]. MapReduce
is constructed of three phases, Map, Shuffle, and
Reduce, where the phases are executed semi-
sequentially and each phase utilizes all the nodes
in the MapReduce cluster.

In the Map phase, the programmer-provided Map
function is executed in parallel over the cluster.
Input data is divided into chunks and stored in a
distributed file system. Each Map task reads some
number of chunks and generates intermediate data
which is used as an input to the Reduce phase.
Intermediate data is then partitioned into a number
of chunks and stored locally on the nodes that
generated them.

In the Shuffle phase, intermediate data chunks are
moved from the local storage of the Map nodes to
the appropriate Reduce node. In this phase, tuples
are grouped on the key field and then all tuples for
a particular key are sent to a single Reduce task. A
Reduce task may process more than one key since
usually the number of keys is much more than the
number of Reduce tasks. This phase requires an
all-Map-to-all-Reduce communication pattern,
thus it heavily utilizes the network.

In the Reduce phase the programmer-provided
Reduce function is executed in parallel over the
cluster. The output of this phase is then stored on
the distributed file system. In case of multi-stage
MapReduce, this output is used as an input for the
next MapReduce stage.

The MapReduce runtime system automatically
partitions the input data, schedules the Map tasks
across the nodes, runs the Shuffle, schedules the
Reduce tasks, and re-executes computations when
nodes fail. MapReduce tracks the execution status
of nodes and assigns new tasks to free nodes
considering data locality. MapReduce
speculatively creates backup copies of straggler
tasks and terminates all outstanding copies when
one copy finishes. Straggler tasks are defined as
tasks that take an unusually long time to execute
and delay the completion of a phase.

Hadoop, the MapReduce implementation, has a
single JobTracker (Master) managing a number of
TaskTrackers (Slaves). The JobTracker is
responsible for scheduling and monitoring jobs
across the cluster. JobTracker tasks include
detecting and tagging failed or slow jobs,
duplicating slow executions, and restarting failed
ones. Input data which resides on a HDFS is split
into even-sized chunks.

Hadoop divides each job into a set of tasks. Each
chunk of input is first processed by a Map task,
which outputs a list of key-value pairs generated
by a programmer-defined Map function. Map
outputs are split into buckets based on key. When
Maps are finished, Reduce tasks apply a reduce
function to the list of Map outputs with each key.
Hadoop runs several Maps and Reduces
concurrently on each TaskTracker – two of each
by default – to overlap computation and I/O [4].
Each TaskTracker tells the JobTracker when it has
empty task slots. The scheduler then assigns it
more tasks.

Hadoop’s scheduler makes several implicit
assumptions [4]. The first assumption is that nodes
can perform work at the same rate and tasks
progress at a constant rate throughout time. This
assumption is not valid in a virtualized
environment as other VMs running on the same
physical machine can affect the performance of
nodes and tasks. The second assumption is that a
task’s progress is approximately equal to its
percent completion. Tasks whose progress
deviates from the normal progress for a phase by
more than a static threshold are considered to be
slow tasks. This assumption is also not valid
because a task consists of a number of phases and
some of these phases (ex. processing data) execute
faster than others (ex. reading data from storage).
So with these assumptions, Hadoop will
incorrectly identify a task in the reading phase as a
slow task if the other tasks have started working
on the processing phase. This is not necessarily
correct since the slow task could catch up with the
other tasks once it finishes the read phase.

3 Problem Definition
In this section, we illustrate the downfalls of the
current implementation of Hadoop and their effect
on the overall job performance.

• A Reduce task can only start after a set of
Map tasks finish and generate the
intermediate data. Thus, if some Map tasks in
this set suffer poor performance, then this will
delay the Reduce task execution which will
affect the total job completion time.

• In Hadoop, speculative execution is used to
support fault tolerance. The JobTracker keeps
track of all scheduled tasks. The speculative
tasks, which are launched when Hadoop finds
the task is unusually slow compared with
others of the same job, will process the same
input data with the hope that it will complete
much earlier than the original one.
Speculative task mechanism trades resources
for speed. The number of Speculative tasks
should be minimized to maximize efficiency.
The current default mechanism fails to pay
attention to the number of speculative tasks
which increases the cost.

• Speculative tasks are activated only when
certain conditions are met. For instance, there
should be no previously running speculative
tasks, most of the job’s tasks are finished, and
a task must be less than 20% completed after
running for 60 seconds. As far as we know,
this algorithm suffers from many problems.
One of the problems is that there is a
possibility that some task might run fast at the
beginning but then slow down or even get
blocked when it is almost finished. This
problem is beyond the scope of the above
algorithm. Another problem is that the
speculative task mechanism does not allow
clients to configure the speculative time gap
and percentage of job complication, making
the mechanism inflexible to the different jobs
needs.

• With the current Hadoop’s scheduler
assumptions, tasks can be wrongly identified
as slow tasks due to the method used for
calculating tasks’ progress and the use of
static threshold.

• Since Map tasks access the input data chunks
over the distributed file system, replicating
slow tasks (running a speculative copy of this
task on another node) will increase the
network usage, which can lead to the network
becoming a bottleneck.

The goals of this work are to determine if shutting
down slow tasks instead of replicating them
(speculative tasks) can be more efficient. We then
determine the deadline for shutting down these
slow tasks. We only address the problem of slow
tasks and leave faulty tasks to Hadoop’s scheduler.

4 Garbage Collector Design
The Java garbage collector is used to manage
memory space automatically. Before releasing an
object’s memory space, the garbage collection
thread invokes a specific method to perform any
sort of cleanup required. In normal operation, the
garbage collector runs concurrently with the
applications. It is able to do most of its work while
the application is paused and completes when all
the application threads have stopped.
In this paper, we propose to use the idea of the
“Garbage Collector” to reap the slow tasks in
Hadoop and allocate them seamlessly on faster
nodes.

Figure 1. Garbage Collector Design

In fig.1, we illustrate the high level design of the
proposed Garbage Collector. The Garbage
Collector consists of a main engine which resides
on the Master node and a set of monitors on the
Slave nodes. Having the engine on the Master
node allows it to collect the information reported
to the JobTracker from the TaskTrackers and also
allows it to command the JobTracker to take
actions towards the slow tasks. The Garbage
Collector monitors on the slave nodes collect the

CPU, Memory and I/O utilization and report back
to the Garbage Collector engine on the Master
node.
The Garbage Collector can be either implemented
as a separate application that communicates with
Hadoop using APIs or it can be implemented as a
part of the Hadoop scheduler. Each method has its
own advantages and disadvantages. The separate
application approach is easier and faster to
implement. However, it is limited to the
functionalities and performance reports provided
by Hadoop APIs and presents an extra deployment
step for the Hadoop users. On the other hand,
implementing the Garbage Collector as a part of
Hadoop scheduler is more difficult but makes it
easier to deploy and provides the Garbage
Collector with more performance information,
allowing it to make more informed decisions.
In the next section, we run a set of experiments to
identify the key factors the Garbage Collector
must consider while making decisions to collect a
garbage node.

5 Evaluation and Analysis
We used Amazon EC2 and Hadoop 1.0.4 stable
release running on Ubuntu 12.04.1 LTS to analyze
the effectiveness of the proposed Garbage
Collector. Two Hadoop virtual clusters were built
to make sure that the results are not affected by the
state of the cloud hardware. Each cluster consists
of 6 “small”-size VMs. One VM (Master VM)
acts as the JobTracker/NameNode while the rest
(Slave VMs) are TaskTrackers/DataNodes. The
Master VM is also running a
TaskTracker/DataNode, so in total we have 6
TaskTrackers/DataNodes. Each data block is
replicated on 2 other nodes. “Small”-size EC2
VMs were used running with 1.7 GB of memory,
1 virtual core 1.0-1.2 GHz, and 8GB of disk space.

In order to simulate slow nodes, we ran CPU,
memory and disk intensive processes on one of the
nodes [4]. The Ubuntu Stress package [10] was
used to create the workload to slow down one of
the cluster nodes. The Stress workload we used is
1000 workers spinning on sqrt()to consume
CPU, 50 workers spinning on
malloc()/free() to consume Memory and
50 workers spinning on write()/unlink()
to consume disk.

As for the workload benchmark, we used the
TeraSort benchmark bundled with the Hadoop
distribution. TeraSort benchmark is the main
benchmark used for evaluating Hadoop at Yahoo!
and it combines testing of both the HDFS and
MapReduce layers of the Hadoop cluster. Input
data of 1GB was generated and used in the
evaluation phase. The job was split to 400 Map
tasks and 50 Reduce tasks. All results reported
here present the mean and the 95% Confidence
Interval values of running the benchmark 5 times.
Resource cost is calculated according to the
following formula:

C = P × (∑ 𝑇𝑓𝑁𝑓 + ∑ 𝑇𝑠𝑁𝑠) (1)

 C is the resource cost required to complete the
job. P is the VM price per hour. Nf and Ns are the
number of fast and slow nodes respectively. Tf and
Ts are the running time of fast and slow nodes
respectively. In all scenarios in our experiments,
we either had one or no slow nodes, so Ns is either
0 or 1.

Experiment 1
Objective: How is Hadoop’s performance
affected by enabling or disabling speculative
tasks? Do speculative tasks improve Hadoop’s
speed?
In a cloud computing environment, tasks may be
slow for various reasons, including hardware
degradation, software misconfiguration, etc. In
this experiment, we slow down one of the five
slave VMs by consuming CPU resources to
simulate a “busy” node.

Figure 2: Time to finish the job with speculative

on and off.

Speculative execution can be enabled or disabled
independently for Map tasks and Reduce tasks, on
a cluster-wide basis, or on a per-job basis. These
configurations are related to two variables:
mapred.map.tasks.speculative.execution and
mapred.reduce.tasks.speculative.exeuction
in the mapred-site.xml configuration file.
Judging from fig. 2, it is hard to tell if the
speculative configuration is helpful in speeding up
Hadoop. This situation could be due to several
factors. First, our experiment is done with 6 small
size VMs with 1GB of data to sort, so the
advantage of the speculative mechanism might be
hidden in such a configuration. Second, the goal of
speculative execution is to reduce job execution
time, but this comes at the cost of cluster
efficiency. On a busy cluster, speculative
execution can reduce overall throughput.
However, executing redundant tasks does bring
down the execution time for a single job.

Experiment 2
Objective: Does collecting (shutting down)
garbage (slow) tasks help in reducing the total job
completion time and resource cost?
In this experiment, we created three scenarios:
1. Baseline Scenario: In this scenario, we run

Hadoop and do not run the Stress workload on
any of the slaves. Thus, this scenario shows
Hadoop’s performance in the case of no slow
tasks and presents the best case scenario
where all tasks run as fast as they can.

2. Slow Node Scenario: In this scenario, we run
Hadoop and run the Stress workload on one of
the slaves to slow it down. Studying the
effects of having multiple slow nodes is left
for future research. In this scenario, we do not
run the Garbage Collector and allow Hadoop
to use its default speculative execution model
to handle the slow tasks.

3. Garbage Collector Scenario: In this
scenario, we run Hadoop, run the Stress
workload on one of the slaves to slow it down
and run the Garbage Collector to collect the
slow tasks. The Garbage Collector is
configured to collect the slow tasks after the
job runs for 2 minutes.

1262
1264
1266
1268
1270
1272
1274
1276
1278
1280

Speculative off Speculative on

Figure 3. Job Completion Time for Baseline, Slow

Node and Garbage Collector Scenarios.

From fig.3, we can see that, when dealing with
slow tasks, the current Hadoop implementation
(slow node with speculative tasks scenario) can
cause a 40% increase in the job completion time
compared to the baseline scenario. This increase
was 7 minutes in our experiment representing 1.4
folds of the execution time of the baseline
scenario. On the other hand, collecting (shutting
down) slow tasks in the first 2 minutes (Garbage
collector scenario) causes only a 16.7% increase in
the job completion time - only added 3 minutes -
to the baseline scenario execution time. Thus, the
Garbage Collector is actually reducing the job
completion time in the presence of slow node
compared to the speculative tasks mechanism.
With the Garbage Collector, instead of waiting for
the slow tasks to complete, the Garbage Collector
kills these tasks and forces Hadoop’s scheduler to
re-schedule them on faster nodes.

Shutting down the slow node reduces the number
of VMs being used and thus reduces the total
resource cost making collecting slow nodes more
cost efficient than keeping them running slowly.
For the job cost, as calculated with Equation 1, fig.
4 shows that using the Garbage Collector would
save 40% of the cost compared to leaving the slow
tasks running till the end of the job. Using the
Garbage Collector keeps the cost almost the same
as the baseline case in which there are no slow
nodes.

Figure 4. Job Completion Cost for Baseline, Slow

Node and Garbage Collector Scenarios.

In fig. 5, we repeat experiment 2 but in a larger
cluster of one master and 12 slaves using 1GB of
data to sort and one slow node. As illustrated in
the fig. 5, the Garbage Collector still yields better
performance than leaving Hadoop to handle the
slow node. Comparing the results of a 12 node
cluster with that of 6 node cluster, we find that the
effect of a slow node on the job completion time
in the large cluster is worse than that in the small
cluster. In the larger case, the effect of a slow node
on the job completion time increased from 40% to
100%. The reason behind this increase is that
more nodes need to wait for the slow Map tasks to
finish so that the Shuffle phase can complete and
the Reduce phase can start. In the large cluster, the
effect of the Garbage Collector on the job
completion time also increased and it helped to
reduce the job completion time by 19% compared
to 16% in the small cluster.

Figure 5. Job Completion Time for Baseline, Slow

Node and Garbage Collector Scenarios with 12
nodes and 1 slow node.

We conclude from this experiment that collecting
(shutting down) slow tasks - and thus nodes- is
more efficient than leaving them running slowly
till the end of the job both in terms of job
completion time and job resources cost.

Experiment 3
Objective: When is it most effective to invoke the
Garbage Collector to shut down slow tasks in
order to minimize the job completion time and
resource cost?
In this experiment, we run the Stress workload on
one of the slaves to slow it down and evaluate the
effectiveness of the Garbage Collector when
invoked at different job completion percentages.
We used the average of the job completion times
from the three scenarios reported in experiment 2
as the estimated job completion time to calculate
the job completion percentage in this experiment.
We ran a set of scenarios, invoking the Garbage
Collector from when the job was 10% completed
to when it was 90% completed. The effect of
invoking the Garbage Collector on the Job
completion time and job resources cost compared
to not invoking the Garbage Collector at all (Y=0)
are reported in fig. 6 and fig. 7, respectively.

Figure 6. Impact of Garbage Collector Invocation

Threshold on Job Completion Time.

In terms of the job completion time, fig. 6
illustrates that the Garbage Collector needs to be
invoked before the job is 40% completed.
Invoking the Garbage Collector after that caused
an increase in the job completion time because at
this point the Garbage Collector is collecting tasks
that are almost finished and thus the generated
intermediate data is lost. From the figure we can
deduce that if the Garbage Collector was not
invoked before the job is 40% completed, then to
minimize the job completion time, it is better to

keep the slow tasks running till the job is
completed (100%). Otherwise, the job takes longer
to finish.
In terms of the resource cost required to complete
the job, fig. 7 illustrates that the Garbage Collector
needs to be invoked before the job is 50%
completed. Invoking the Garbage Collector after
that caused an increase in the resource cost.

Figure 7. Impact of Garbage Collector Invocation

Threshold on Job Completion Cost.

We conclude from this experiment that, in general,
there is a point at which it is essential to collect
(shut down) the slow tasks in order to save time.
In our experiments using the TeraSort benchmark,
that point is before the job is 40% completed. If
that is not possible, then it is better to keep the
slow tasks running till the job is completed.
Similarly, in general there is another point at
which the slow jobs should be collected if the
main objective is to reduce the resources cost and
a slower job completion can be tolerated. In our
experiments that point is before the job is 50%
completed, thus giving more time to do the
analysis to identify slow tasks before starting to
collect them. To generalize these results, we are
planning on repeating this experiment using a set
of different workload benchmarks to determine
how the workload type affects the collection point
and to deduce guidelines for selecting the
collection points.

Experiment 4
Objective: How to identify garbage tasks? What
is the perfect time to say that a task is being slow
and what are the major factors causing a task to
slow down?

Instead of monitoring individual tasks, we monitor
the whole node’s utilization. Node utilization
presents a faster, less complex metric with
available history that can be checked before even
submitting the tasks. In this experiment, we
consider the virtual machine CPU, Memory and
Disk utilizations. To evaluate the effect of the
utilization of the different components on the job
completion time, we consider 4 scenarios:
1. No Stress Workload Scenario: In this

scenario, no Stress workloads are running (i.e.
no slow nodes). This scenario presents the
baseline for comparison.

2. CPU Stress Workload Scenario: In this
scenario, we run 10,000 CPU workers on one
of the slaves to cause the CPU to become a
bottleneck.

3. Memory Stress Workload Scenario: In this
scenario, we run 50 Memory workers on one
of the slaves to cause Memory to become a
bottleneck.

4. Disk Stress Workload Scenario: In this
scenario, we run 10,000 Disk workers on one
of the slaves to cause Disk access to become a
bottleneck.

Figure 8. Effect of the different types of Stress

workloads on the Job Completion Time.

In this experiment, we work on identifying the
bottleneck resource for a job and then use it to
determine the slow tasks. The results of this
experiment, represented in fig.8, show that CPU
contention had the largest effect on slowing the
tasks down. CPU contention can be caused by
other applications using the CPU or be due to
memory thrashing.
Using the ratio between the CPU usage of the task
and the VM CPU utilization can be a good

indicator of a task running slow. A high ratio
would indicate that the task is running as fast as
possible and consuming the CPU, in this case, the
garbage collector will not consider this as a slow
task. On the other hand, a low ratio would indicate
that the CPU time is being consumed by
something other than the task, making the task run
slow. In this case, the garbage collector will flag
this task as a slow task and collects it. More
investigation still needed in this point to determine
the threshold that differentiates between high and
low ratios.
The effects of CPU and memory were expected;
however, what came as a surprise was that Disk
contention only causes 10% increase in the job
completion time. This might be a result of having
a large memory in our experiments that increased
the memory hit rate, thus there was no much need
to load data from disk.
As a conclusion from the three last experiments,
we deduce that, for our experimental scenarios,
allowing Hadoop to monitor the CPU utilization
ratio on the TaskTracker nodes and using a CPU
utilization ratio threshold to identify garbage tasks
before the job is completed with a certain
percentage can indeed save time and reduce cost.

6 Related Work
Hadoop’s performance is closely tied to its task
stragglers. Thus, a number of studies have
investigated how to minimize the effect of poor
performance nodes and tasks on the overall job
performance. However, the problem of finding the
optimal way to identify slow tasks and efficiently
migrate the processed data in a cost effective
manner is still unsolved.
Hadoop assumes that cluster nodes are
homogeneous and tasks are executed linearly. This
assumption is then being used to decide when to
active speculatively tasks for the stragglers.
However, homogeneity might not be true in
practice because of the use of different hardware
and virtualized resources. LATE [4] is the first
work to point out and address the short-comings of
MapReduce in heterogeneous environments
(virtualized data centers included). LATE, which
stands for Longest Approximate Time to End,
focuses specifically on managing slow tasks. The
study showed that the current slow task

management techniques lead to poor performance
in heterogeneous clusters and proposed a new
robust scheduling algorithm for identifying,
prioritizing, and scheduling backup copies for
slow tasks. LATE focuses on estimate time left
rather than progress rate. It is supposed to execute
only tasks that will improve job response time,
rather than any slow tasks. LATE claims to have
reduced Hadoop’s response time by a factor of
two.
SAMR [5], Self-Adaptive MapReduce, extends
LATE by calculating the progress of tasks
dynamically and adapting to the continuously
varying environment automatically. It deals with
the Map and Reduce phases separately and
specifies several new parameters for self-adaption.
Tarazu [9] enhances the performance by
implementing a communication-aware scheduling
and load balancing to reduce network traffic when
replicating slow tasks.
These techniques relies on scheduling backup
copies of the slow tasks while keeping the slow
tasks running, the Garbage Collector on the other
hand, relies on shutting down the slow tasks and
allowing the default Hadoop scheduler to
reschedule them. By shutting down slow tasks, the
slave becomes free to serve other tasks instead of
being locked to a slow task. Also, by not creating
backup tasks, the load (number of tasks to serve)
is reduced, thus decreasing the job cost. An
empirical comparison is needed to compare these
different techniques and is left for future work.
The Garbage Collector still can utilize the
advanced task progress calculations provided by
these techniques for a better estimation of the time
left for a task to complete. This can help the
Garbage Collector to better decide when to be
invoked to collect the slow tasks.
ISS [7] protects data generated by Map tasks
(intermediate data) against node failures by
replicating locally-consumed data online. Mantri
[6] extends the ISS idea and provides a broader
solution that replicates task output based on the
probability of data loss and the recursive cost of
re-computing inputs. Mantri is also considered the
first study on a large production MapReduce
cluster of thousands of servers as it was deployed
by Microsoft Bing search engine. RAFT [8]
proposed using piggy-backs checkpoints to persist
intermediate results at several points in time to
deal with multiple node failures. Thereby, RAFT

can re-compute intermediate data instead of re-
executing the task.
The Garbage Collector would benefit in terms of
reducing the re-execution time of slow tasks, if
integrated with one of these techniques to preserve
the data processed before the slow node was
collected. This data can then be excluded from
being processed again when the slow task is re-
executed.

7 Conclusions and Future
Work

In this paper, we proposed a Garbage Collector to
collect garbage (slow) tasks in Hadoop. We
evaluated the hypothesis that collecting (shutting
down) these garbage tasks can save time and
reduce cost. We used Amazon EC2 to build two
Hadoop virtual clusters to evaluate our hypothesis.
The empirical results using the TeraSort
benchmark show that collecting garbage tasks
does indeed save time and reduce cost but only if
the Garbage Collector is invoked before the job is
40% completed. Otherwise, it is more efficient -
both in terms of time and cost- to keep these
garbage tasks running till the job is completed.
The results also show that a CPU utilization ratio
threshold on the TaskTracker nodes is a good
method to detect if tasks are going to run slowly.
The design of our initial experiments is coarse
grained. More in-depth investigation with a larger
set of workload benchmarks is still needed to
detect accurately the appropriate time for invoking
the “Garbage Collector”. Our current results
indicate that it is worthwhile improving Hadoop’s
speculative task mechanism and “Garbage
Collector” might be the cure. In our experiment,
we only used Hadoop clusters of 6 and 12 small
size VMs. However, we are looking forward to
extend our experiment on a larger cluster.
For the future work, we plan to integrate the
Garbage Collector engine and monitor with the
JobTracker and TaskTracker respectively. We also
plan to study the effects of having multiple slow
nodes per cluster on the Garbage Collector
performance. Finally, we plan to combine the
Garbage Collector with one of the intermediate
data reservation techniques (ISS [7], Mantri [6] or
RAFT [8]) introduced in the related work section
to see if this would reduce the time and cost
further.

References

[1] J. Dean and S.Ghemawat. MapReduce: simplified
data processing on large clusters. Commun.
ACM 51, 1 (January 2008), 107-113. 2008.

[2] T. White. Hadoop: The Definitive Guide (1st ed.).
O'Reilly Media, Inc.. 2009

[3] B. Venners. Inside the Java Virtual Machine.
McGraw-Hill, Inc.1996.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving MapReduce performance
in heterogeneous environments. In Proceedings of
the 8th USENIX conference on Operating systems
design and implementation (OSDI'08). 29-42.
2008.

[5] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo.
SAMR: A Self-adaptive MapReduce Scheduling
Algorithm in Heterogeneous Environment.
In Proceedings of the 2010 10th IEEE
International Conference on Computer and
Information Technology (CIT '10), 2736-2743.
2010.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in map-reduce clusters using Mantri. In
Proceedings of the 9th USENIX conference on
Operating systems design and
implementation(OSDI'10), 1-16. 2010.

[7] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making

cloud intermediate data fault-tolerant.
In Proceedings of the 1st ACM symposium on
Cloud computing (SoCC '10). 181-192. 2010.

[8] J. Quiané-Ruiz, Ch. Pinkel, J. Schad, and J.
Dittrich. RAFT at work: speeding-up mapreduce
applications under task and node failures.
In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of
data (SIGMOD '11). 1225-1228. 2011.

[9] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. Tarazu: optimizing MapReduce
on heterogeneous clusters. SIGARCH Comput.
Archit. News 40(1): 61-74. 2012.

[10] A. Waterland. 2009. Stress the deliberately simple
workload generator for POSIX. Online [last visit
April 2nd, 2013]:
http://weather.ou.edu/~apw/projects/stress/

[11] Applications and organizations using Hadoop.
Online [last visit June 22nd, 2013]:
http://wiki.apache.org/hadoop/PoweredBy

[12] S. Ghemawat, H. Gobioff, and Sh. Leung. The
Google file system. ACM SIGOPS Operating
Systems Review, 37(5): 29-43. 2003.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proc. of the
IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), 1-10. 2010.

http://wiki.apache.org/hadoop/PoweredBy

