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Abstract:

In  this  paper,  we  have  implemented  a  novel  video  object  detector  and  tracker  using  the

YOLOv2 architecture as a basis for the network. With the rise of video datasets and self-driving cars,

many industries seek a way to perform quick object detection on video, as well as perform predictive

tracking on these objects. The proposed video object detector and tracker is in fact a predictive object

detector and tracker, allowing for object prediction and information to be known before the event takes

place.  This  network  implements  the  novel  convolutional  2D LSTM layer  presented  in  [1] .  Two

different  approaches  were  taken  to  implement  this  network.  The  first  is  an  intuitively  easy  to

understand post-temporal pattern matching attempt wherein the YOLOv2 detector is used to detect

objects  in two images and the novel convolutional  2D LSTM layer  performs it’s  temporal  feature

mapping  across  the  output  tensors  of  the  detectors.  The  second approach,  although  less  intuitive,

provides better results by performing the temporal feature mapping first across two images and feeding

the output into the YOLOv2 detector that has been partially wrapped using a Time Distributed layer.

Finally, the network was tested on the MOT 2017 dataset and although did not perform competitively

against state-of-the-art techniques, the network was able to perform predictive object detection and

tracking, demonstrating that the convolutional 2D LSTM layer is useful for a variety of video analysis

problems. Future work in this field proves promising for video analysis and predictive object detection

in general.
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Chapter 1: Introduction

1.1. Motivation 

Image  object  recognition  and  object  tracking  are  fundamentally  important  problems  in

computer vision. Image object recognition has many interesting solutions within the field of neural

networks. With the advent of newer, more complete image datasets interesting questions regarding the

use and applications of object detection and object tracking have arisen. The difficulty in many video

object tracking algorithms is due to the fact that a singular algorithm often has to deal with a multitude

of different obstacles[1]. More recently, using neural networks to perform object detection and object

tracking has become more and more feasible and many industry applications have become apparent.

Using object detection and tracking allows for video analysis to determine paths that objects take and

how they change throughout that path. Self-driving cars should track pedestrians, surveillance cameras

should track suspect objects, drones should track people and determine possible paths along a route. 

Unfortunately,  state-of-the-art  methods  are  not  exceptionally  fast,  often  forcing  current

applications to perform on incomplete information.  These traditional visual tracking methods often

must deal with dimensionality and loss of local structural information problems. Due to the speed

requirement of online visual object tracking, most methods involve the use of kernels [2], [3][4]. These

often require  kernel weight updates in real time, unfortunately,  this  requires heavy computation to

perform quickly[4]. 

Fig 1.1 Sample YOLO detection on the MOT dataset.[5]

When a human drives a car, they are able to determine where a pedestrian, vehicle or other

object is moving and how fast they are moving.  This allows them to, in a difficult scenario, make
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quick decisions based on this information. For drones and self-driving cars, having the ability to track

and  predict  motion  of  objects  allows  them to  make  the  important  decisions  when  required.  This

predictive capability is something that is often lacking in object detectors and the temporal pattern

matching is often missing in the current object trackers. 

1.2. Key contributions:

In this  paper,  we propose the use of a  convolutional  2D LSTM layer  as  a spatio-temporal

pattern matching layer in order to perform predictive object detection/tracking. Many current object

detection and tracking networks lose the temporal information that occurs in the use of purely image-

based object detection. The ability to have visual memory of particular video sequences, allows for

spatial and temporal based object detection and tracking[6]. By adding a memory module, using a 2

dimensional convolutional network composed of LSTM (long-short term memory) nodes, the network

learns to remember particular motion patterns and possible changes in height or width. This allows the

network to use both spatial awareness (through the convolutional network) and temporal awareness.

Finally,  the  temporal  pattern  matching  allows  for  memory  of  possible  classifications  of  bounding

boxes. When the network classifies a bounding box as being a “person”, it remembers that it has done

so and requires stronger features to classify it as anything else. 

This convolutional 2D LSTM was first introduced in the now-forecasting paper as it allows for

interesting and useful spatial and temporal pattern matching[1]. This novel layer was proposed in order

to  deal  with  spatio-temporal  sequence  pattern  matching,  which  relates  thoroughly  to  the  network

tracker implemented in this paper. This make sense for use in the predictive object tracker and detector

proposed as it allows for sequence-to-sequence learning of the dataset. What this network shows is that

predictive object detection and tracking benefits from this novel layer and further research using this

layer could lead to valuable breakthroughs in predictive image processing. 

1.3. Layout:

In this paper, we will discuss current implementations of object detectors and trackers, as well

as current trends in image processing with regards to neural networks in chapter 2. We will continue by

discussing the actual implementation of the network as it currently stands and the results that were

received by training the network in chapter 3.  A comparison against the YOLOv2 Detector is done in

order  to  demonstrate  the  effectiveness  of  the  network  against  state-of-the-art  approaches.  Finally,
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chapter 4 will discuss and summarize the novel aspects of the network as well as discuss the future

works required to further the networks accuracy and precision.

Chapter 2: Background

2.1.  YOLO9000

One of the most interesting object detectors in the field is known as the You-Only-Look-Once

9000 detector (YOLO9000). This is the network that inspired this paper and revolutionized the field by

introducing a state-of-the-art,  real time object detector capable of detecting over 9000 classes from

ImageNet[7] .   This  object  detector  is  a  series  of  22  blocks  of  convolutional,  max  pooling,  and

leakyReLU layers. A skip layer is attached on the 20 th block, concatenating a fine and coarse series of

feature maps.

The object detector they have implemented uses a more robust training method wherein images

are  preprocessed  and augmented.  Furthermore,  both  images  with  and without  bounding boxes  are

passed in. For those with bounding boxes, a full backpropagation is performed, but if an image with no

bounding box and only classification is seen, simple classification only backpropagation is done. This

allows the network to learn a very large number of classes and closes the boundary between object

detection and image classification[7].

2.2. Tracking Papers

Single object tracking often requires the previous frame and the current frame, as well bounding

box information on the previous frame[8]. They are able to track novel objects in images and estimate

their movements and variance. One of these networks is described in “Learning to Track at 100 FPS

with Deep Regression Networks”.  This network learns motion smoothness by making certain that the

center of bounding boxes are described as relative to the previous frame giving a delta x and delta y

value. In a similar situation, they model changes in scale using the previous frame and a gamma width

and gamma height to describe the change[8].

Most object trackers focus on the definition of tracking as “..  the analysis of video sequences

for the purpose of establishing the location of the target over a sequence of frames ...”[3]. This often

starts with the bounding box on the initial frame. This unfortunately is not always the case in modern
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day computer vision analysis. We are often in a situation where time is sensitive and performing object

tracking without the initial bounding box is critical to the situation.

Other trackers, such as the one from  [9] focus on the problem from a practical surveillance and

activity  tracking  perspective.  These  trackers  look  at  distributed  consensus  networks  that  perform

activity  recognition  and  tracking  from a  multitude  of  cameras.  The  method  used  is  a  non-neural

network method, which focuses on the Kalman-Consensus algorithm and look at a variety of different

parameters to both infer and track the activity[9].

It can be seen from [3], [10]–[12]  that there are certain features of a neural network tracker and

object detector that are extremely important. The ability for the network to generalize well, handling

occlusion and reflections, motion blur and transfer training are all extremely important in a good object

tracker/detector. 

2.3. Datasets and Transfer Learning

Some of the most popular datasets for object detection are the MS COCO, PASCAL VOC, and

for object tracking the MOT dataset. Unfortunately, the number of good video tracking datasets is small

in  comparison  to  the  amount  of  object  detection  datasets.  As  such,  [13] demonstrated  that  these

networks are able to be fully trained on synthesized virtual data and scale well to real world data. In

fact, [13] trained a network entirely on virtual data and performed competitively against state-of-the-art

networks on modern datasets. 
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Chapter 3: Implementation Details

3.1. Overview

There are two extremely well known approaches to solving the problem of object detection. The

first involves the use of a sliding window that allows the network to deal with particular elements of the

image and associate a confidence and a class score to each window. This method is commonly used by

nets such as the R-CNN or the faster R-CNN.[12][3] Unfortunately, these methods are still quite slow

in comparison to the method used by YOLO and YOLO9000. These networks use an anchor based

method that allows the network to predict over the whole image using grids to segment specific parts of

the image. An image-net or VGG16 style network is used to extract features out of the image and

outputs a specific (GRID_HEIGHT,GRID_WIDTH, _ ) shape tensor (in this case YOLOv2 feature

extractor was used).  This is then fed to a convolutional neural network with outputs that relate to

specifics of the results ([anchors,x,y,delta x,  delta y],[confidence],[classes]).[7],  [14] A custom loss

function is used to judge the networks ability to predict bounding boxes and class. This loss function is

discussed in detail in YOLOv2 and YOLO9000[7].

Fig. 3.1 Custom Loss Function defined by YOLO9000 and YOLOv2[7]

This initial implementation used an object detection network that is trained separately and used

as part of a tracker network that, using the same loss function, trains the convolutional 2D LSTM and

final convolutional layers to output bounding boxes and classes.  The second implementation of the

object  tracker,  as it  changes the object  detection network (from YOLO) by wrapping it  in a  Time

Distributed wrapper and adds a Convolutional 2D LSTM, must be trained anew and weights cannot be

initialized to the initial YOLO weights.

The YOLO loss function is extremely important to the network as it manages to evaluate a

variety of different aspects of the problem all at once. Constants can be changed to mark particular
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elements more important than others. The network is evaluated on the loss from the regression of the

x,y box coordinates, width and height values, as well as the loss from classifying objects, the loss from

classifying wrong objects and a final overall classification loss. The total of this value corresponds to

the loss of the network[7]. The network performs non-max suppression in order to stop overlapping

predictions of the same class. This means that a maximum number of boxes can be predicted. For the

sake of computational efficiency, a maximum of ten boxes are chosen as the final predictions. 

3.2.  Data:

Some of the most common datasets being used in video tracking and object detection are the

COCO dataset and the MOT benchmark dataset. The COCO dataset is a large-scale object detection,

segmentation, and captioning dataset with several features.[15] There are 80 object categories and a

multitude of different annotation styles. This dataset was collected by gathering images of complex

everyday scenes containing common objects. The 2017 Validation and Test images were the images

used for classification training of the network. Some preprocessing is done on the dataset to select the

appropriate  number  of  objects  per  image.  A maximum  of  ten  objects  are  chosen  per  image  and

annotated appropriately. Anchors are created using k-means clustering to determine the aspect ratio of 5

anchor boxes that fit most of the dataset and the average IOU that it produces.[7] This is important so

that when the network predicts a bounding box, it selects the type of anchor box, the location for the

anchor box and the difference in width and difference in height for the box.

 

Fig. 3.2. Coco dataset annotations and bounding boxes on sample image
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The MOT 2017 dataset is being used for the video object tracking component of the network.

This dataset is a large collection of video frames from a variety of different types of scenes. Each frame

is laboriously detailed with bounding boxes and label annotations, as well as unique IDs pertaining to

the unique path of every object. This dataset is important as it also comes with a crucial standardized

benchmark, leaderboards and evaluation techniques.  

3.3. Program:

The most commonly used program in neural networks is the Tensorflow backend for python. It

is extremely popular and has been used by a multitude of different networks and papers. As a high level

interface to Tensorflow, Keras was used to allow for quick and simple prototyping. These both have

pythonic  implementations.  Tensorboard  was  used  for  loss  visualization  and  model  architecture

confirmation. We are also using YAD2K (Yet Another Darknet 2 Keras), to allow for the use of the

YOLO v2 network for the detectors in the first implementation. This allows for weight transformation

from Darknet to Keras, which simplifies the training of the tracker, as then we are certain that the

detectors work.

3.4. Implementation Details:

For the initial implementation of this network, a base feature extractor is important. This feature

extractor is common and present in many popular object detection networks. The feature extractor is a

series of 2D convolutional layers, sometimes followed by batch normalization, then a LeakyReLU and

a max pooling layer. A Skip connector connects one of the earlier layers of the feature extractor with a

later  layer. This is thoroughly described in the YOLO9000 paper, and an in-depth, layer by layer,

explanation of the final predictive tracker implementation can be found in Appendix A.

The YOLOv2 object detector is implemented in Keras and Tensorflow and the official weights

from darknet  were  ported  to  make  sure  the  network  was  trained  and  operation  to  state-of-the-art

performance. Two frames are passed into the network in a sequence generator and must pass through

their own detectors. The output tensor from the two detectors are concatenated and reshaped to be able

to pass through a convolutional 2D LSTM layer and finally to a convolutional 2D layer.  Although this

implementation  is  interesting  as  it  allows  for  a  clearer  understanding  of  the  intuition  behind  the

network, it does not perform as well as the second implementation of the network. 
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The second implementation of this network uses the base feature extractor from YOLOv2 but

performs a convolutional 2D LSTM initially before being fed into the a series of Time Distributed

wrapped YOLOv2 extractor layers. The output from this network is closer in architecture to the initial

YOLOv2 implementation but the temporal pattern matching is front-loaded and distributed along the

network. This is the final implementation of the tracker that was used.

Fig.3.3. Architecture for implementation 2 of predictive object tracker

Certain parameters are chosen for the loss function and for the network in general that allow the

network to perform differently. The weight decay and momentum are chosen from  [7] as they have

been shown to aid in converging quickly. The object scale loss is kept at five times the scale of the

other losses in order to punish predicting objects over all other aspects of the network. If this number is

made to be lower, the network tends to predict a multitude of false boxes all over the image. 
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3.5. Validation:

Validation is done post training and uses the COCO dataset as well as the MOT dataset. The

validation requires a prediction of bounding boxes for each image and a IOU (Intersection of Union)

calculation against the ground truth. The intersection of union is a particular evaluation metric that is

used  to  measure  the accuracy of  an object  detector  on a  particular  dataset.  This  is  often done by

dividing the area of overlap by the area of the union. This calculation can be seen as the percentage of

the  ground  truth  that  is  encompassed  within  the  predicted  bounding  box  (fig3.4).  An  additional

validation method is used called the mAP (mean Average Precision). This is a very commonly used

method amongst object detectors and there are a variety of different values that can be used to compare

the network against other networks.

Fig. 3.4. IOU measurement figure

One issue with using the MS COCO dataset for validation is that this dataset is well know for

producing lower mAP compared to many other datasets. The COCO dataset achieves a 48.1% mAP in

YOLO, but YOLO achieves 63.4% mAP in VOC 2007[14]. These numbers however are still better if

not similar to those by conventional state-of-the-art methods[15]. 

Our trained implementation of the YOLOv2 network trained on the MOT dataset performed at

65.6% mAP on the MOT 2017 dataset. The first implementation of the predictive tracker yielded a

43.4% mAP on the MOT 2017 dataset. The second implementation yielded a much better 54.9% mAP

on the MOT 2017 dataset (over a 10% increase in mAP).  This number is low compared to many other

object trackers, however it should be noted that other trackers require initial bounding boxes to be fed

into the network[3], [8]. As they do not perform object detection (because the bounding boxes are

initially fed into the network), it is expected that our network would perform worse on complicated

object tracking datasets such as MOT 2017. 
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Fig. 3.5. Frame from Predictive Tracker Demo

   

Fig. 3.6. Example frame from Tracker
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3.6. Discussion:

The initial implementation yielded a rather low mAP on the MOT dataset, while the second

implementation  yielded over  a  10% increase  in  mAP compared to  the initial  implementation.  Our

intuition for this increase in mAP has to do with something discussed in [11] . They discuss the idea of

generating  in-domain  training  data  by  synthesizing  plausible  future  video  frames.  The  predictive

detector/tracker  does  not  synthesize  plausible  future  video  frames.  However  the  convolutional  2D

LSTM layer allows the network to develop interesting feature maps that incorporate temporal patterns

amongst the spatial features. This allows for the network to perform it’s detection on the temporal and

spatial patterns from the beginning, rather than attempting to finely separate them at the end. 

Regardless, both networks perform worse than state-of-the-art methods for object tracking. The

reason for this seems to be the fact that the predictive tracker is entirely predictive, unlike the other

object trackers. Object trackers such as those detailed in  [11], [16] require initial bounding boxes in

order to perform object tracking. As such, they perform object assignment inference and object velocity

inference.  The  predictive  tracker  must  do  object  assignment  inference,  object  velocity  inference,

classification,  and  object  detection.  Each  of  these  steps  introduces  possible  loss  in  accuracy  and

precision and compounds over time. 

On top of all this, the predictive tracker has a maximum number of boxes to predict of ten. Most

of the MOT dataset has a much larger number of bounding boxes to track. By increasing the number of

bounding boxes however, we introduce a greater possibility of error in object detection. This can be

mitigated slightly by performing some confidence score thresholding, IOU thresholding and increasing

the maximum boxes to predict. This comes to us at the cost of increasing computational requirements

and increasing dataset size requirements. 

To  handle  this  problem  and  make  the  network  perform better,  fine-tuning,  and  separating

predictive object detection and object tracking should be done. Fine-tuning has been shown to provide

excellent results on neural networks performing object tracking[13] and the use of large virtual datasets

for  initial  training  would  allow  for  quick  transfer  learning.  Finally,  separating  predictive  object

detection and object tracking will allow the network to focus on a particular problem while achieving

parallelism, hence increasing the online speed of the network. 
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Chapter 4: Conclusion and Future Work

4.1. Future Work: 

For  future  works,  the  use  of  object  relative  velocity  and  object  relative  width  and  height

changes might be used in the stead of absolute x and y values. This would allow the network to focus

on object velocity prediction. Secondly, having a specialized predictive object detector and a dedicated

object tracker would allow each network to focus on different aspects of the problem. Dividing the

problem into  sections  and  combining  them into  a  final  product  should  increase  performance  and

accuracy of the networks. Finally, some changes should be made with regards to the amount of images

that can be fed into the network (perhaps even a full video). This would allow the network the ability to

use more information than is  often found in two simple images.  An implementation similar to  [4]

would work quite well for feeding a multitude of frames, if not a whole video into the network. This

may even be expanded with video super resolution, allowing the network to either synthesize future

video frames or synthesize better video frames (with motion blur, occlusion and lighting invariance). 

4.2. Summary:

In this  paper,  we have proposed a  predictive  object  tracker  that  performs predictive object

detection and classification through the use of the previous two frames. It uses the architecture from

YOLOv2 paper and expands upon it using the novel convolutional LSTM 2D layer. This layer, having

only  been  used  in  predictive  now-forecasting,  has  demonstrated  it’s  ability  to  learn  sequence-to-

sequence  object  detection  and  tracking  through  prediction.  Although  the  network  under  performs

compared to state-of-the-art methods, it provides insight on the development of the field in terms of the

predictive capabilities of these networks. 

The use of the MOT dataset for video object detection was useful in terms of benchmarking and

demonstrating the capabilities of the video object tracker, particularly in comparison to the YOLOv2

detector. Regardless, the future of video object detection and tracking is bright. With advances in neural

network libraries, new and novel convolutional implementations and increasing research in the field,

video and image processing is increasing in importance in the field of computer vision. 
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