
Incremental Test Case Generation for UML-RT Models
Eric J. Rapos, Juergen Dingel, James R. Cordy

Modeling & Analysis in Software Engineering Group
Software Technology Lab

School of Computing, Queen’s University
Kingston, ON

{eric, dingel,cordy} @cs.queensu.ca

1. E.J. Rapos. “Understanding the Effects of Model Evolution through Incremental Test Case Generation for
UML-RT Models”. MSc Thesis. Kingston, Canada, September 2012.

2. E.J. Rapos and J. Dingel. "Incremental Test Case Generation for UML-RT Models Using Symbolic Execution".
Poster at IEEE International Conference on Software Testing, Verification and Validation (ICST'12).
Montreal, Canada, April 2012.

3. K. Zurowska and J. Dingel. "Symbolic Execution of UML-RT State Machines". 27th ACM Symposium on
Applied Computing, Track on Software Verification and Testing (SAC-SVT'12). Riva del Garda, Italy, March
25-29, 2012.

4. K. Zurowska and J. Dingel. "SAUML - a Tool for Symbolic Analysis of UML-RT Models". Tool Demonstration
Paper. 26th IEEE/ACM International Conference On Automated Software Engineering (ASE'11). Lawrence,
Kansas, USA, Nov 6-10, 2011

5. K. Zurowska and J. Dingel. "Symbolic Execution of UML-RT State Machines". Technical Report 2011-578,
School of Computing, Queen’s University, June, 2011.

6. B. Selic. “Using UML for Modeling Complex Real-Time Systems”. Muller, F., Bestavros, A. (eds.) LCTES 1998.
LNCS, vol. 1474, pp. 250–260. Springer, Heidelberg (1998)

7. N.H. Lee, S.D. Cha. “Generating test sequence using symbolic execution for event driven real-time
systems”. Microproc. and Microsys. 27, 523–531 (2003)

8. IBM Rational Software Architect RealTime Edition - http://www-
947.ibm.com/support/entry/portal/overview//software/rational/rational_software_architect_realtime_ed
ition

9. EMF Compare - http://www.eclipse.org/emf/compare/

Introduction & Motivation Background

Model Change Classifications Incremental Test Case Generation

Future Work Validation

Model Differencing
Use RSA-RTE’s internal differencing tool to identify differences between original and evolved model.

Inputs: 2 RSA-RTE Models Outputs: List of Differences between Models

Choose Best Action
Based on difference, select best option.

Direct
Updates to SET and Test

Suite
Directly update the SET and

test suite
using information

available from
differencing

models
Inputs: SET and Tests

Outputs: Updated SET and
Tests

Partial Symbolic
Execution

When not possible to directly
update, second preference is
partial symbolic execution.

Inputs: Old SET and new
model

Outputs: New SET

Full Symbolic
Execution

As a last resort, we may need
to fully symbolically execute

the entire model.
Inputs: new Model
Outputs: New SET

Test Case Generation
A full test suite is generated for the newly obtained SET.

Inputs: New SET Outputs: Generated Test Suite

Test Suite Differencing
Given the new test suite, we difference it with the original test suite and determine which of the test cases have

changed or been added or removed, so we know which tests need to be run, and which do not.
Inputs: Original and New Test Suites Outputs: List of added and/or removed tests

The iterative nature of model-
driven engineering (MDE) gives
rise to redundant test case
regeneration

Our goal was to understand and
classify the effects of model

evolution on test cases

The overall aim was to improve
the efficiency of test case
maintenance tools by reducing
this redundancy

UML-RT Symbolic Execution Test Case Generation

Evolution Impact on SET Action Required

1. Modify State Uniform Direct Update

2. Delete State Sectioned Direct Update

3. Delete Transition Sectioned Direct Update

4. Add Parameter Uniform Direct Update

5. Add Transition Sectioned Partial Symbolic Execution

6. Add State Sectioned Partial Symbolic Execution

7. Modify Transition Sectioned Partial Symbolic Execution

8. Add Entry Code Sectioned Partial Symbolic Execution

9. Modify Entry Code Sectioned Partial Symbolic Execution

10. Delete Entry
Code

Sectioned Partial Symbolic Execution

11. Add Action Code
(output signal)

Sectioned Partial Symbolic Execution

12. Add Action Code
(value change)

Sectioned Partial Symbolic Execution

13. Delete Parameter Uniform Partial Symbolic Execution

14. Modify Initial
Value

Untraceable Full Symbolic Execution

1. Determine 14 Standard
Evolution Steps

2. Perform these steps on 5
different models

3. Compare resulting
Symbolic Execution Trees
(SETs) with original

4. Determine the impact of
evolution on execution
(sectioned, uniform, or
untraceable)

5. Determine what type of
update needed to SET
(partial symbolic execution,
direct update, or full
symbolic execution)

Procedure Results

Shift focus to other formats,
including Simulink Models

Examine real-world models to
demonstrate the industrial

merits of our work

1. Generate changed
model versions

2. Symbolically execute
each changed model,
and generate tests
using existing methods

3. Produce new test suite
using our tool

4. Compare execution
times of two versions average performance of our tool (IncreTesCaGen) over five models, compared

to traditional test generation methods (percentage of gain/loss in time)

Heavier focus on the
maintenance of production
tests through co-evolution

• Real-time behavioural
modeling of systems

• States, transitions, triggers,
and actions

• RSA-RTE implementation

• All possible executions of a
system are computed

• Symbolic values are used

• A Test Case is generated for
each path through the tree

• Automated process

Direct Update evolutions performed the
best, requiring no symbolic execution or
test generation

Models which generate SETs containing
subsumption generally performed poorly

Larger models showed more of a
performance improvement than smaller
models

The location of the change in the model
impacted performance

Model 1 Model 2 Model 3 Model 4 Model 5

1. Direct Updates

1 55.72% 36.90% 34.95% 15.59% 55.55%

2 26.07% 26.40% 30.69% 5.65% 11.22%

3 34.13% 22.48% 42.13% 31.30% 33.10%

4 56.05% 19.66% 34.56% 39.81% 38.93%

2. Partial Symbolic Execution

5 31.63% -26.20% -3.44% -1479.38% 1.42%

6 26.74% -13.66% 13.17% -476.50% -5.46%

7 23.29% -21.30% -21.78% -206.29% 5.31%

8 28.62% -45.20% 3.92% -21.61% -9.03%

9 34.21% -46.31% 5.44% -5.60% -5.70%

10 -35.14% -30.15% -124.66% -13.65% 26.42%

11 33.82% 4.28% -251.68% -5.50% -88.72%

12 32.45% -18.39% -951.18% -443.95% 5.78%

13 -249.64% -45.39% -65.91% -60.46% -19.64%

3. Full Symbolic Execution

14 -2.89% -38.40% -53.12% -22.00% -25.85%

Conclusions

1 2 3

