
Co-Evolution of Model-Based Tests for Industrial
Automotive Software

Eric J. Rapos
School of Computing, Queen’s University

Kingston, Ontario, Canada
Email: eric@cs.queensu.ca

PhD Advisor: James R. Cordy

I. INTRODUCTION

The concept of co-evolution refers to two (or more) objects
evolving alongside each other, such that there is a relationship
between the two that must be maintained. In the field of co-
evolution of model-based tests, this refers to the the tests and
test models evolving alongside the source models, such that
the tests and test models remain correct for testing the source
models. Previous work centered largely on the iterative de-
velopment aspect of Model-Based Testing (MBT)[5], however
further attention is needed on the prolonged maintenance of
model-based tests after initial release.

Thesis Statement: Model-based test efficiency can be
improved by co-evolving test models alongside system models.
This can be done through studying software model evolution
patterns and their effects on test models in order to apply
updates directly to the tests.

II. RELATED WORK

The work by Zech et al. [7] for the MoVE frameork, deals
specifically with regression testing and the selection of the
test set, however we aim to focus on the co-evolution aspect,
and how exactly tests change and evolve alongside the source
models. Similarly work by Farooq et al. [4] also focuses on the
selection of regression tests for future testing; our work will
incorporate this step but also expand to include the adaptation
of existing tests. With regards to the testing work done in
Simulink [1], this work looks specifically at the testing of
systems, while our work aims to explore how these types of
tests evolve.

III. METHODOLOGY

The work is being conducted using Matlab Simulink as
our modeling language. This is primarily due to the increasing
number of automotive companies (General Motors included)
that are using this technology in their development. There are
three phases to the proposed research: (i) Evolution Study, (ii)
Algorithm Design, and (iii) Prototype Tool Development. Each
phase is meant to be self-contained, with results filtering into
the next.

A. Evolution Study
The first phase of the project consists of an extensive

look at a number of consecutive versions of existing models
and their corresponding test models (actual models and tests
provided by our industrial partners) to determine how these
domain models evolve. We will be extending prior work [5],
now making use of MATALB Simulink Models, however we
require a new set of evolutionary steps specific to this domain,
which also cover a wider range of operations. The first goal

will be to determine a concrete set of models that will be
used for the remainder of the work. Criteria will include
models with multiple versions, and test models included, and
they should preferably be industrial models with real world
applications.

The methodology for comparing versions of models and
tests will be to make use of Simulink’s built-in model model
comparison, as well as our MATLAB script which makes use
of the same differencing algorithm, to accurately determine
differences between versions in order to create the catalog of
differences. It is believed that these observed differences will
fall into three broad categories: additions, modifications, and
deletions (similar to those presented by Cicchetti et al. [2]).
From there, it is likely that each of these differences will
apply to the native elements of Simulink models, such as
subsystems, connections, signals, attributes, etc., thus resulting
in combinations of the two (added subsystem, deleted subsys-
tem, modified attribute, deleted connection, etc.). Based on the
catalog of changes obtained from this examination, the next
part of the study will be to analyze the impacts of these model
evolution steps on tests to determine how they co-evolve with
the models.

B. Algorithm Design

Using the information obtained from the Evolution Study,
the goal of this phase is to develop a set of algorithms for
implementing the co-evolution of model-based tests. When
given an existing model (M ), its current test model (TM ), and
a number of changes applied to the model (∆) (thus resulting
in a new version of the model (M ′)), we will determine what
changes (∆′) need to be made to the test model to ensure
that the updated test model (TM ′) is a correct test for the
newly updated model (M ′), and how to apply them in the
most effective way.

The aim is to develop a set of algorithms that take as
input M , M ′ and TM , and are able to apply all necessary
updates to TM to generate TM ′. Recall the three categories
of differences that we propose to be working with: additions,
modifications, and deletions. Given an added model compo-
nent, it is hypothesized that we will likely be required to add
functionality to the test model, while a deletion will require
the removal of functionality. This phase will solidify the rules
for these types of updates, and formalize them in a set of
algorithms. Furthermore, based on the portions of the test that
remain unchanged, we will identify which tests do not need to
be rerun during later runs, thus reducing the amount of testing
required.



C. Prototype Tool Development
Using the algorithm developed in the previous phase, the

third phase will be the development of a prototype tool which
automates the co-evolution of model-based testing. Continuing
with the Simulink use-case, the goal will be to implement
our co-evolution testing framework within Simulink, writen
in MATLAB code, much like our lab’s tool SimNav [3]. The
minimum requirement will be an interface that allows users to
select two consecutive versions of a model (or set of models),
along with the first version’s test models; the prototype tool
will then perform the updates to the tests. However, it is
possible that we can make use of a Simulink version control
system to manage the selection of model and test versions,
such that the user need only be concerned with updating the
models, and the updating of tests is done automatically in the
background. Included in the prototype will also be a report to
the user of the changes made to the model (reported in easy
to understand terms), as well as any necessary updates to the
tests, as manual interaction may be required in some cases.

In addition to the co-evolution work from this project, the
goal is to create a complete testing workbench within Simulink
that is capable of automatically generating test model stubs
for a given system, determining differences between versions
(model differencing is a well-known application [6]), and
automatically co-evolving test models alongside the models
(the major research contribution of this project).

IV. EVALUATION

The final phase of the doctoral thesis will be an evaluation
in which we test not only the correctness of the implementa-
tion, but its performance and usability as well. Evaluation will
be conducted on the set of models used throughout the project.

Correctness: Evaluating the correctness of our approach
will be the easiest result to obtain, as we will simply be
comparing the test models generated by our tool against
the existing test models. We will be looking for functional
equivalence between the tests, to ensure that our generated
tests test exactly the same behaviours as the originals.

Performance: Performance of our prototype tool will be
measured on the criteria of time. Time performance will make
use of two measurements to identify the amount of time
required for the generation of the updated test models. First,
we will look at the computation time required by the tool
to generate the updated test model, and second we will look
at the amount of person-time required to make use of the
model and begin executing test models. These times will be
compared to baseline results of manually updating existing
models and executing the updated versions. The end result will
be a percentage of improvement over the manual generation.

Usability: With regard to usability, we hope to provide
evidence that our interface and methodology will be preferred
by test engineers. To show these results, we plan to conduct
usability studies, using developers from our industrial partner
as subjects, in order to determine which methodology they
prefer for the continued updating of test suites for their
production models.

V. LIMITATIONS AND RISKS

The biggest risk we face in this proposed work is the avail-
ability of a substantial set of models and test models. While we

intend on working with models obtained from General Motors
as a result of my internship, there is a possibility the entire set
will not be available. If this is the case, the open source models
will serve as a complete set, however a substantial amount of
models will be useful to provide additional results.

VI. CONTRIBUTIONS

Our work will make the following contributions to the
fields of model-based testing, and automotive software devel-
opment:

• methodology for co-evolution of model-based tests
• catalog of evolution patterns in Simulink
• ability to identify impact of evolution on tests
• increase the efficiency of MBT test evolution process
• a test evolution workbench for industrial automotive

model development

VII. PROGRESS MADE

Initial exploration of models and tests has been completed.
Examination of the publicly available Automotive models, as
well as those obtained from GM, has provided insight into
the types of models we will be working with, all of which
contributes to our first milestone of selecting models. Initial
experimentation has been conducted with methods for differ-
encing versions of Simulink models, and a Matlab script has
been developed which determines if a change is an addition,
modification, or deletion, and identifies the basic Simulink type
of the object; this work will contribute to the construction of
the evolution catalog, our second milestone, as well as the
algorithm design, our third milestone. Additionally, work in
the automation of test model generation has been completed.
We are now capable of taking a developed library model,
and automatically generating the test harnesses necessary to
simulate execution using test inputs. This process will be useful
in the co-evolution of tests, in that we will be able to create the
updated test models with ease, allowing us to focus research
efforts on the test values themselves.

REFERENCES

[1] E. Bringmann and A. Kramer. Model-based testing of automotive
systems. In Proceedings of the First International Conference on
Software Testing, Verification, and Validation, ICST ’08, pages 485 –
493, April 2008.

[2] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating
co-evolution in model-driven engineering. In Proceedings of the 12th In-
ternational IEEE Enterprise Distributed Object Computing Conference,
EDOC ’08, pages 222 –231, September 2008.

[3] James Cordy. Submodel pattern extraction for simulink models. In
Proceedings of the 17th International Software Product Line Conference,
pages 7–10, Tokyo, Japan, August 2013.

[4] Q. Farooq, M. Iqbal, Z.I. Malik, and Matthias Riebisch. A model-based
regression testing approach for evolving software systems with flexible
tool support. In 17th IEEE International Conference and Workshops on
Engineering of Computer Based Systems (ECBS), pages 41–49, 2010.

[5] Eric James Rapos. Understanding the effects of model evolution through
incremental test case generation for UML-RT models. Masters thesis,
Queen’s University, Kingston, ON, September 2012.

[6] Matthew Stephan and James R. Cordy. A survey of methods and
applications of model comparison. Technical Report 2011-582, School
of Computing, Queen’s University, Kingston, Ontario, Canada, 2011.

[7] Philipp Zech, Michael Felderer, Philipp Kalb, and Ruth Breu. A generic
platform for model-based regression testing. Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for Mastering
Change, 7609:112–126, 2012.


