
Co-Evolution of Model-Based Tests for Industrial Automotive Software

Eric J. Rapos and James R. Cordy
School of Computing, Queen’s University

{eric, cordy} @ cs.queensu.ca

Fields of Study

Software
Testing

Software
Modeling

Software
Evolution

Model-Based
Testing

Evolution of
Model-Based

Tests
Model

Evolution
Test

Evolution

Motivation Model Selection

Proposed Methodology

Validation Limitations & Risks References

• Model Type: MATLAB Simulink

• Domain: Automotive Software

• Sources: MATLAB Central, General
Motors

• The iterative nature of model-driven
engineering leads to the redundant
regeneration of model-based tests.

• Understanding how changes in models
impact associated tests will lead to better
understanding of model evolution.

• Improving the efficiency of automotive
model-based testing through possible
reductions is of interest to our industrial
partners.

• Correctness
• Benchmark Comparisons

• Performance
• Timed Experiments

• Usability
• User Surveys

• Availability of industrial models

• Obtaining results for user surveys

• Constrained to one modeling technology

1. E.J. Rapos. “Understanding the Effects of Model Evolution through
Incremental Test Case Generation for UML-RT Models”. MSc Thesis. Kingston,
Canada, September 2012.

2. Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan Sprinkle. A
generic in-place transformation-based approach to structured model co-
evolution. ECEASST, Volume 42, 2011.

3. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating
coevolution in model-driven engineering. In Proceedings of the 12th
International IEEE Enterprise Distributed Object Computing Conference, EDOC
'08, pages 222-231, September 2008.

4. Philipp Zech, Michael Felderer, Philipp Kalb, and Ruth Breu. A generic platform
for model-based regression testing. Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change,
7609:112-126, 2012.

Determine Impact
Based on an initial Evolution Study we will
search our catalog of evolution impacts to

determine what, if any, impact the evolution has
on tests.

Identify Updates
Based on the determined impact, identify the tests
that need to be updated and which signals, values

and times need to be adjusted. Additionally,
identify any additional tests required.

Compare Versions
Using model differencing tools, we will

determine exactly how two versions of a model
differ.

Manual Interaction (when required)
There may be differences in model versions that
require manual interaction by the test engineer,
such as the introduction of a new signal (input

or output), which will require a set of values for
the signal.

Present Updated Test Suite
Our prototype implementation will then display the

results of the co-evolution to the test engineer,
summarizing the changes, and presenting the

option to run the new test suite, examine, or save
and quit.

Apply Updates (when possible)
For possible changes in the test cases, updates

are made directly to the source test files.
Updates such as changing values will be simple,
however added signals become more difficult

and may require manual interaction.

M M’

TM TM’

Model Evolution
(Δ)

Required
Updates (Δ’)

Is Tested By Is Tested By

Model Evolution Impact on Tests

…

Add Outport Add output signal

Modify Outport …

…

Modified Function Block Alter Output Values

Delete Function Block …

…

In1 In2 Out1

1 1 2

1 2 3

…

5 5 10

5 6 11

…

100 100 200

100 101 201

…

In1 In2 Out1 Out2

1 1 1 ?

1 2 2 ?

…

5 5 25 ?

5 6 30 ?

…

100 100 10000 ?

100 101 10100 ?

…

In1 In2 Out1 Out2

1 1 1 1

1 2 2 2

…

5 5 25 5

5 6 30 6

…

100 100 10000 100

100 101 10100 101

…

In1 In2
Out1 Out2

Old New Old New

1 1 2 1 - 1

1 2 3 2 - 2

…

5 5 10 25 - 5

5 6 11 30 - 6

…

100 100 200 10000 - 100

100 101 201 10100 - 101

…

