
Eric James Rapos, Juergen Dingel
{eric,dingel}@cs.queensu.ca

Modeling & Analysis in Software Engineering Group
School of Computing

Queen’s University, Kingston, Ontario, Canada

Background Motivation
Model Driven Development

• Incremental Process (M1 M2 … Mn … Generated Code)
• More and more commonly used, especially in real-time systems

Symbolic Execution
• Model program behaviour
• Existing work allows generation of Symbolic Execution Tree (SET)
• Using SETs, automatic test case generation can occur
• SETs are useful in analyzing program changes

Example SET

Furthering of Research in Model Driven Development
• Improve usability of MDD techniques
• Develop tools for developers
• Work on cutting edge research

Improve Efficiency of Test Case Generation
• Automatic regeneration of test cases can be inefficient and

sometimes redundant
• Make only the necessary changes to a test case
• Use an incremental process, to coincide with the MDD process

Understand Effects of Model Transformations
• Each type of change to model will have certain effects on the SET

and test cases
• We hope to categorize all typical model evolution steps in order to

understand how they effect the artifacts of MDD

The Process

Incremental Test Case Generation
for UML-RT Models

Planned Work Expected Outcomes
Develop ECORE Model of Symbolic Execution Trees

• Standard representation of Symbolic Execution Trees
• Output of Symbolic Analysis
• Used for Comparison in Step 3 from above

Collect a Standard Set of Model Evolution Steps to Evaluate
• Begin with Bran Selic’s paper on refinement patterns [Sel11]
• Use four categories:

• No change
• Renamings
• Additions
• Deletions

Generate Test Cases and Compare Differences
• Use the collected set to compare different model changes on test

cases
Develop a Functioning Prototype That Will Automate The Process

• Automate the process carried out above in a software prototype

A Set of Rules on Model Evolution
• For each standard model evolution step, determine its effect on:

• Symbolic Execution Tree
• Test Cases

• Investigate non-standard evolution as well to determine possible
effects

• Formulate a set of rules based on findings
Better Understanding of State Machine Evolution

• The above rules will not only be useful in our work, but as a better
understanding of the MDD Process

A Software Implementation
• Input to tool: original model, test case for original model, and the

evolved model
• Functionality: Use “The Process” to determine effects on test case
• Output from tool: modified test case for evolved model
• Future: Potential for integration with development environment

Resources

1. [Sel11] Bran V. Selic, “A Short Catalogue of Abstraction Patterns for Model-Based Software Engineering”, to appear in Journal
of Software and Informatics (2011)

2. [ZD11a] K Zurowska, J Dingel, “Symbolic Execution of UML-RT State Machines”, DRAFT (2011)

3. [ZD11b] K Zurowska, J Dingel, “Modular Symbolic Execution of Communicating and Hierarchically Composed UML-RT State
Machines”, DRAFT (2011)

4. [UKB10] Engin Uzuncaova, Sarfraz Khurshid, Don S. Batory, “Incremental Test Generation for Software Product Lines”, IEEE

Trans. Software Eng. 36(3): 309-322 (2010)

5. IBM Rational Software Architect Real-Time Edition (RSA-RTE) - http://www-
947.ibm.com/support/entry/portal/Overview/Software/Rational/Rational_Software_Architect_RealTime_Edition

6. Eclipse Modeling Framework (EMF) - http://www.eclipse.org/modeling/emf/

SM2

TC1 TC2

SET1 SET2

1. Model Refinement

2. Generate

4. Generate

3. Compare

6a. ITCG

1. Model Refinement
• Perform changes to models
• Use collected set of changes

2. Symbolic Execution Tree
Generation
• Existing process
• Automated generation of SETs

3. Comparing Effects on Symbolic
Execution
• Determine effects of changes

on SETs
• Create rules based on findings

4. Automatic Test Case Generation
• Existing process
• Use SETs to automate

generation of test cases
• Initially for both models, for

comparison, but only on
original model in the end

5. Comparing Effects on Test Cases
• Determine effects of model

changes on test cases
• add to rules from Step 3

6a. Incremental Test Case Generation
• Goal of our work
• Able to make changes to

model and incrementally
generate test cases based on
rules

6b. Regeneration of Test Cases
• We want to avoid this at all

costs
• Same process as Step 4
• This is what we feel can

become inefficient and
redundant

• Used solely as a last resort.

SM1

6b.

Regenerate

2. Generate

4. Generate

5. Compare

http://www-947.ibm.com/support/entry/portal/Overview/Software/Rational/Rational_Software_Architect_RealTime_Edition
http://www-947.ibm.com/support/entry/portal/Overview/Software/Rational/Rational_Software_Architect_RealTime_Edition
http://www-947.ibm.com/support/entry/portal/Overview/Software/Rational/Rational_Software_Architect_RealTime_Edition
http://www.eclipse.org/modeling/emf/

