SOFT 437

Software Performance Analysis

Course Outline
General Information

• Instructor: Dr. Khalid Elgazzar
 – Adjunct Assistant Professor – Queen’s School of Computing
 – http://cs.queensu.ca/~elgazzar/
 – elgazzar@cs.queensu.ca
 – Office: Goodwin 531
 – Office hours: Anytime (advance appt is recommended)

• Course Web site/Resources
 – http://cs.queensu.ca/~elgazzar/soft437/
 – http://www.perfeng.com/

• Schedule – Goodwin 247
 – Monday: 11:30 AM – 12:20 PM
 – Tuesday: 13:30 - 14:20 PM
 – Thursday: 12:30 - 13:20 PM
Khalid Elgazzar

Research Award 2014

- 2 Best Paper awards
- Mitacs/IBM Award
- Founder of 3 Workshops

Academia
Queen’s University

Academia + Industry (R&D)

Software Development
Research Interests

Mobile and cloud Services
Web and Text Resources

• Lecture notes available at:
 http://cs.queensu.ca/~elgazzar/soft437/

• Text book

• Reference books
The Big Picture

• What factors impact the performance of a software system?
 – Response Time
 – Scalability
 – Cost

• Model and measure software systems to predict and find performance problems ahead of time

It is much easier to correct performance problems early in the design phase than it is when all code is written!
Course Contents at a Glance (cont.)

• Introduction and Overview
 – Ch1 - Introduction
 – Ch2 – SPE Quick Overview
 – Ch3 – SPE and UML

• Software Performance Engineering (SPE) Models
 – Ch4 - Software Execution Models
 – Ch5 – Distributed Systems

• Software Architecture and Styles
 – Ch6 – System Execution Model
Course Contents at a Glance

• **Data Collection**
 – Ch7 – SPE Data Collection
 – Ch8 – Measurements and Instrumentation

• **Software Contention and Capacity Planning**
 – Resource Contention and Queuing

• **Performance Oriented Design**
 – Ch9 – Design Principles
 – Ch10 - Software Design Patterns
 – Ch11 - Software Anti-patterns
Marking Scheme

- Course Assignments
 - Apply what you learn into practice
 - Four small projects
 - Skills for software performance modeling, analysis and design
 - Techniques for architecture design
 - Programming skill
 - Presentation
 - You may work in a group of 2, or individually.

- Marking Scheme
 - 4 Assignments - 40%
 - 3 Quizzes - 15% on Thursdays in Week 4, 8, 11
 - Final Exam - 45%
Get to know each other

- What is your name?
- What is your background on software developments?
- Why do you select SOFT 437?
- What do you expect from SOFT 437?
Chapter 1: Introduction
What is Performance?

• Performance refers to the *response time* or *throughput* as seen by the users

• *Response time* is the time required to respond to a request
 – For example, time required for an ATM withdraw transaction

• *Throughput* is the number of requests that can be processed in some specified time interval
 – An ATM network may be required to process 100,000 transactions per hour
Responsiveness

- **Responsiveness** is the ability of a system to **meet its objectives** for response time or throughput.
- Responsiveness is a measure of:
 - How fast the system responds to an event (example: time for an ATM withdraw transaction)
 - The number of events that a system can process in a given period (example: the number of transactions during an hour)
- Responsiveness has both an objective and a subjective (user perceived) component.
Scalability

• \textit{Scalability} is the ability of a system to \textit{continue} to meet its response time or throughput objectives as the \textit{demand} for its functionality \textit{increases}.
Why Performance?

If life were like this, we’d not need SPE
Siri captures voice snippets on your iPhone, GPS data... (A lot on information)

Ships the data to an Apple data center

Uses a mixture of cutting edge AI/NLP with a vast database of utterances to make sense of what you said

Remembers information to improve responses
High performance is not always cool!

“Do you know why I pulled you over today?”

“I’m sorry, sir. I don’t know how fast I was going.

“John, your speed was 82 mph, and your top speed today was 91 mph.

Resume “text Sally”?
Examples of Performance Failures

• NASA Space Expedition – delayed 8 months due to poor performance of FOS software
• [Real-time Systems] Quebec senior house fire 2013 - Fire sprinkler did not activate on time
• On-line Christmas shopping
 – futureshop.ca, bestbuy.ca
 – etoy.com

Ms. [Lauren Cooks] Levitan said eToys' performance looked good until the week before Christmas when it suddenly deteriorated. "If you had a disappointing experience, as a consumer, you're probably not coming back to eToys," she said. "And we won't know for sure if they've fixed their problems until next Christmas."
Examples of Performance Failures

• News media Web sites after 911
 – 4 seconds is the acceptance/tolerable rate for loading a web page
 – It took on average 13 seconds for home pages of news Web sites to load on Tuesday morning
 • CNN.com, New York Time
 – The sites cut photos, graphics, text and ads from the first page, leaving just one story on static Web sites
How should you manage performance?

Reactive

- Let’s build it first and see what it can do
- We’ll tune it later
- We cannot do anything until we have something to measure
- We have fast HW
- Don’t worry, you are in safe hands
- Problems? We don’t have problems

Proactive

- The project has a performance engineer (PE)
- Everyone in the project knows the name of the PE
- There is a procedure in-place on how to identify performance issues
- Team members are trained in performance processes

Fix-it-later

appeared first in the old days
Common Situations

• Performance problems often arise due to fundamental architecture or design factors rather than inefficient coding
• Many problems are not detected until integration testing
• It is more costly to modify code versus modifying designs

The most serious consequence of performance failure is the possibility of business failure!
Relative Cost to Correct Error

Taken from Course Notes by D. Berry in the School of Computer Science, University of Waterloo
ATTENTION!

The use of new software technology requires careful attention to **performance** until the performance aspects of the new technology are understood.
Resources VS Demands

Intermittent Connectivity
Mobility
Limited Resources

Resources VS Demands
Is SPE Necessary?

Resource Requirements

Workload + New SW

Capacity

Computer capacity

SPE detect problems early in developments and use qualitative methods to support cost-effective analysis