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Abstract

We are now witnessing the rapid growth of decentralized
source code management (DSCM) systems, in which every
developer has her own repository. DSCMs facilitate a style
of collaboration in which work output can flow sideways
(and privately) between collaborators, rather than always
up and down (and publicly) via a central repository. Decen-
tralization comes with both the promise of new data and the
peril of its misinterpretation. We focus on git, a very popular
DSCM used in high-profile projects. Decentralization, and
other features of git, such as automatically recorded con-
tributor attribution, lead to richer content histories, giving
rise to new questions such as “How do contributions flow
between developers to the official project repository?” How-
ever, there are pitfalls. Commits may be reordered, deleted,
or edited as they move between repositories. The semantics
of terms common to SCMs and DSCMs sometimes differ
markedly, potentially creating confusion. For example, a
commit is immediately visible to all developers in centralized
SCMs, but not in DSCMs. Our goal is to help researchers
interested in DSCMs avoid these and other perils when
mining and analyzing git data.

Out of a stem that scored the hand
I wrung it in a weary land.

A. E. Housman, A Shropshire Lad

1. Introduction

Since the turn of the century, researchers have taken
advantage of the data found in SCM repositories that has
been made freely available for Open Source Software (OSS)
projects. This data has been used to reconstruct the process
by which the software was created [1], [2]. Researchers have
also used this data to create recommender systems [3], [4],
[5], study evolution patterns [6], [7], [8], predict bugs [9],
[10], [11], and examine collaboration [12], [13], [14].

The number of software projects using DSCMs has in-
creased, and looks set to continue to do so. Figure 1 shows
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Figure 1. The Debian Project’s Use of SCMs.

the number of projects with Debian packages that report
using a given SCM over time1. As of February, 2009,
36% of the packages include SCM information. Although
incomplete, this data gives a strong indication that git is
second only to SVN in use and that its use is growing.
Indeed, git has also been adopted by a number of high profile
OSS projects such as X.org, Ruby on Rails, Wine, Samba,
Perl, and the Glasgow Haskell Compiler.

The repositories of these and other projects are of interest
to researchers, but their data differs in important ways from
that which is found in their centralized counterparts.

Massey and Packard [15] have presented a method of
converting CSCMs to git for mining data. However, to our
knowledge, only one paper [16] has examined data mined
from a git-based project. This paper presented results of
analysis of data drawn from the Linux git repository. We
have also found one article in the Linux Weekly News that
uses data mined from git to track how patches find their
way into the stable main line linux tree from subsystem git
repositories [17]. Neither the paper nor the article addresses
the core differences between git and centralized SCMs,

1. According to data provided by projects using the vcs- (SCM-)
headers introduced to Debian package descriptions in 2006.



differences that lead to very different practices in SCMs and
DSCMs. Entirely new phenomena are observable in DSCM
data, that lead to many new questions. The data offers
researchers many new opportunities, but it also is rife with
both conceptual, and pragmatic risks. In the course of mining
and analysis, we suffered many setbacks and came to false
inital conclusions due to incomplete understandings about
the data and what processes led to the data we observed.

We compare SVN and git, popular and representative
SCMs of the centralized and decentralized flavors. The most
fundamental difference between the two is that, under git,
developers can share code in a managed way without making
use of a master repository, commits to which affect all
other developers. This is because developers have their own
repositories, each of which can tell a different part of a
software project’s story.

Promise 1: Since any developer on a git project can
make their own repository publicly accessible, it is
possible to recover more history, including work in
progress and work that never makes it into the stable
codebase.

Any person may make their own git repository publicly
accessible and there already exists free git hosting services,
such as GitHub, Gitorious, and repo.or.cz. For example, at
the time of this writing there are 481 publicly accessible
developer git repositories cloned from Ruby on Rails2.

Different developers can have different content in their
repositories. For instance, Ubuntu maintains its own repos-
itories of the Linux kernel which contains changes of their
own, some of which never make it into the official kernel
tree. David Miller, a Linux developer, maintains a repository
named net-next-2.6 which contains new or experimental
code and is the staging area for network code in the kernel.

Despite the decentralized model, many OSS projects have
an “official” repository from which releases are made and
which developers use as the source. These repositories, and
those of the more active developers, are likely to be the most
interesting to researchers.

In projects using SVN, commits often only make it into
the repository after being vetted; the rest of the activity (false
starts, experiments) are largely invisible. With git, by mining
from developers’ repositories, it is possible to recover a
more complete picture of the development process, including
unpolished, experimental work that does not make it into the
stable code base.

We begin our discussion of the promises and perils of
mining git, with a clarification of the conceptual differences
between the centralized and decentralized SCM worlds.

2. As reported by Github.com in February, 2009.
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Figure 2. Sample decentralized usage of git

2. Conceptual Differences

Peril 1: Git nomenclature differs from that of central-
ized SCMs (CSCMs): a) similar actions have different
commands; and b) shared terms can have different
meanings.

Figure 2 illustrates the DSCM world for a 4-person team
consisting of Tom, Bob, Alice and Ram, who collaborate
on a large project. There is no centralized repository: each
developer has their own, which they use to make commits,
check out different versions, compare version differences,
and so on.

This looks very different from a centralized SCM world
and engenders nomenclature differences that can perplex
even those who have some familiarity with git; especially
those terms whose semantics differ subtly. To bootstrap our
analysis, we broadly delineate these differences here, diving
into more subtle differences as needed in the context of
specific promises and perils.

In both SVN and git, the working copy is the current
checked-out state of the repository. The developer Alice
executes svn checkout or git clone to create a working
copy. Alice can now work and, when she is ready, commit
her contributions, using the commit command in both SVN
and git. The fundamental difference is that in SVN commits
are sent to the central repository, but in git they remain
local. Hence, SVN commits are visible to all developers;
git commits may not be. In SVN, Ram would have to issue
a svn update to see the changes just committed by Alice.
Under git, Alice’s commits move to another repository only
when a) another developer, e.g. Ram, pulls changes into
current branch of his repository via git pull or b) Alice
pushes her changes to a remote repository using git push.

Pulling in git differs from an SVN update in that a
developer may pull from any number of remote repositories
into his own. It is much more common for a git developer
to pull than push because a push requires write access and
because each developer “owns” his repository and decides
what goes into it. However, git does support a centralized
workflow via a bare repository. A bare repository is not



exclusively owned by a single individual and does not have
a working copy that a push can disrupt.

In SVN, commits are identified by a sequential number,
and it is trivial to determine their order. In git, each commit
is identified by the SHA-1 hash of its contents, and it
is impossible, given only two git commit identifiers, to
determine which one was performed earlier.

Branches in CSCMs are usually used for releases and
for major, experimental efforts. We have observed that
it is uncommon practice for developers using CSCMs to
create branches just for their own individual work that is
regularly merged into the mainline. By contrast, branches
are lightweight in git. Developers using git freely create
branches for new features or bug fixes, test them, and then
merge them into the release/stable branch once they are rea-
sonably confident. One important feature of git is its ability
to track merges of branches, something that SVN lacks.
Git also creates many branches as an unintended side-effect
of decentralization (see Peril 2 in which implicit branches
are discussed). Such branching differs fundamentally from
the common use of branching in CSCMs. The head of any
branch, in both SVN and git, is the last commit made to that
branch. For mining purposes, SVN and git tags are identical.
All git repositories start with a single, explicit branch whose
name is master by convention. Git’s master is similar, but
not equivalent, to trunk in svn, cf. Peril 3.

Since git records information about both branches and
merges, the history of a repository is represented by a graph
of commits, compared to the tree-like structure of commits
in SVN. In git a commit may have more than one parent
(due to merging) and may be the parent of more than one
commit (due to branching). Since no commit may be its
own ancestor, the graph represented by commits and their
directed parent-child relationships is a directed acyclic graph
(DAG). The term DAG is used throughout the paper and
is common in git vernacular. Two git commits in different
repositories have the same SHA-1 iff they have the same
ancestors in the DAG and the same contents, which means
that their working copies were identical when they were
created. SHA-1 is a highly reliable indicator of content
equivalence, and allows tracking of content pulled from
common origins, which allows two repositories that have
separately pulled identical content from a third repository
to merge from one another without the use of that third
repository.

A merge in git creates a new commit (a marker for the
merge in the DAG) that has at least two parents. There are
two key differences between merging in git and SVN: 1)
n-way merging occurs in git and creates a merge commit
with n parents; and 2) SVN does not explicitly track merge
information, such as conflicts and their resolution. When a
merge conflict arises, git writes the resolution to its commit.
In addition, the merge that occurs whenever a SVN devel-
oper updates his working copy is never recorded, whereas

Alice's first commit
Bob's first commit
Alice's second commit
Bob's second commit

t1
t2
t3
t4

Alice's merge committ5

(a) Implicit Branching

Alice's first commit
Bob's first commit
Alice's second commit
Bob's second commit

t1
t2
t3
t4
t5 Alice updates

(b) SVN Linear History

Figure 3. The result of identical commit sequences.

analogous operations in git are. We note that tools such as
Perforce, ClearCase, Accurev, and SVN version 1.5 include
merge tracking. However, the DAG created by these tools
are semantically different, and the popularity and history of
use of these tools in OSS projects is small (SVN 1.5 only
tracks merges that occur after the code base switched to
version 1.5 and cannot recover historical merges).

Peril 2: Here Be “Implicit Branches!”(With apologies to Dragons)

Developers can explicitly create explicit branches in both
git and SVN. In SVN, all branches are explicitly created, but
this is not the case with git. As two collaborating developers
commit to their local git repositories, their repositories
diverge—i.e. each repository contains new commits not
present in the other. When one of the developers pulls
from the other, git merges the remote sequence of commits
into the pulling developer’s repository. These changes are
recorded as two branches that start at the commit where the
repositories started to diverge (the last commit in common)
and end at a merge commit created by git. One branch
contains the local developer’s commits; the other contains
the commits from the remote developer. Neither developer
has explicitly created a branch. Thus, we call a branch that
pulling can create an implicit branch. These branches can
be confusing to those familiar only with centralized SCMs
like SVN where a branch is always explicit and refers to
alternate line of development.

Figure 3(a) illustrates implicit branching. Before time t1
Alice and Bob’s repositories are identical. After t3, their
repositories have diverged: each contains commits unknown
to the other. Alice and Bob continue working independently,
on separate codelines, as shown. At t5, Alice pulls the
changes from Bob’s repository and resolves any conflicts,
merging both repositories, and automatically creating a com-
mit for the merge. Before t5, Bob’s changes are not visible
to Alice; after t5, Bob’s codeline is an implicit branch in
Alice’s history. Bob’s repository, however, does not contain
Alice’s commits. In contrast, Figure 3(b) displays the history
formed if Alice and Bob made the same changes using a
CSCM. Because Bob’s commit changed the shared, central
repository, Alice must update her working copy at t3 and
resolve any conflicts that arise before she can make her



Merge branch 'v4-0-local' of git://git.id10...

Merge branch 'v4-0-test' of git://git.samba...

rework 'compleated' (sic) message in provisio...

Merge branch 'v4-0-test' of git://git.id10t...

mkrelease: Update to work with Git instead ...

Merge branch 'v4-0-test' of ssh://git.samba...

torture: fix compiler warnings

This is Samba4 alpha3!

Figure 4. A subgraph of the git DAG of commits leading up
to release of 4.0 alpha 3 of Samba.

commit; in Figure 3(a), Alice freely committed to her local
repository. Similarly, Bob must update, and resolve potential
conflicts, before his second commit. In SVN, the fact that
Alice and Bob worked separately on different lines of
development is lost.

3. Git Data Ore

Promise 2: Git facilitates recovery of richer project
history through commit, branch and merge information
in the DAGs of multiple repositories.

Since git tracks both implicit and explicit branches and
merges within and between repositories, it holds the promise
of data not tracked by SVN (which tracks branches within
the central repository, but not merges). This includes:

1) Implicit branches, showing how often developers pull
and push changes from other repositories;

2) Feature (explicit) branches, showing collaboration ac-
tivity: changes pulled directly between developers, vs.
via an intermediary “official” repository.

3) Merge points, including the set of conflicted files, and
who/when performed the merge and resolution.

4) Pulls from remote repositories, and the overall topol-
ogy of the “pull network”.

5) The DAG, and set of commits in different repositories
for the same project can determine the differences and
“distance” from each other.

There are a number of possible uses for this data. For
instance, is the spontaneously emerging “pull-network” of
repositories hierarchical, centralized, or decentralized? Are
there discernible patterns of collaboration between develop-
ers working on features in their own branches? Is there a
relationship between status within a project and how often
or how quickly a developer’s changes are integrated into the
official repository?

Alice's first commit

Bob's first commit
Alice's second commit
Bob's second commit

t1
t2
t3
t4

merge committ5

(a) Before Rebasing

Alice's first commit

Bob's first commit
Alice's second commit

Bob's second commit

t1
t3
t2
t4

(b) After Rebasing

Figure 5. Example of Rebasing

Peril 3: Git has no mainline, so analysis methods must
be suitably modified to take the DAG into account.

In SVN, the ancestry of a commit can be captured as
linear series of commits and the trunk or “mainline” is
often modeled in this fashion. Rather than following a single
“mainline”, git project development flows through a set of
paths in a DAG from the initial commit to the head. Analysis
methods and storage techniques must therefore handle non-
linear commit ancestry, including remote ancestry. Figure
4, which depicts the branching that occurred in the Samba
repository prior to a release shows this phenomenon.

In both git and SVN, developers work in parallel. Two
features that were made in a series of commits can be made
at the same time. However, because SVN requires developers
to update before making commits, the development history
of these two features will have become interleaved. In
effect, parallel development on a “mainline” results in the
complete effort being projected into a single date-ordered
line. Although miners can view this projection if they wish,
it is not imposed and the projection must be created before
using existing analysis methods, or alternate methods must
be used.

Peril 4: Git history is revisionist: a repository owner
can rewrite it.

While other SCMs, such as SVN, also allow history to
be rewritten, it is difficult and rarely done. Git allows a user
to rewrite history through a process called rebasing. A user
selects a sequence of commits to rebase; he may then alter
the order of commits, remove commits, squash the edits in
multiple commits into one commit, or flatten a sequence of
commits on multiple branches onto a single branch. When
commits are reordered or flattened, all information about the
commit contents (date, author, changes to files) are retained,
but the DAG and the commit hash are modified. The most
commonly observed rebasing use case is to flatten a series of
implicit branches. Many projects have policies restricting the
use of rebasing [18]. These policies should be understood
when analyzing data mined from git. Figure 5(b) shows what



first commit on feature

merge commit

t1
t2
t3
t4
t5
t6

first commit on master

second commit on master

second commit on feature
third commit on master

Figure 6. The git DAG after branches master and feature
are each merged with each other.

Alice’s git repository would look like if the commits in 5(a)
were flattened (removing the branch and the merge commit)
and reordered.

Rebasing is often used to “clean” a branch prior to having
it pulled into another repository. Thus, the history in a git
repository (especially a stable official project repository)
may not reflect what actually happened to arrive at that
particular state. Use of rebasing is one reason to mine
satellite repositories, those developers use to write new
features, as these respositories may contain the complete,
unmodified development history.

Peril 5: You cannot always determine what branch a
commit was made on.

Although a commit is explicitly created on a specific
branch of a specific git repository, the commit does not
record the branch on which it was created. It can be difficult
or impossible to recover this information. Figure 6 shows
what the git DAG looks like after a crisscross merge. Alice
merges a branch named feature to master, then master

into feature. These merges share a single merge commit,
as shown.

The commits prior to the crisscross merge at t4 are
all ancestors of the heads of both subsequent branches.
Commits are rarely annotated with the name of the branch
to which they were written and the default commit message
of the merge commit is merge branch ’master’ into

feature, which does not helpfully distinguish its parents.
Thus, if the repository were mined at time t6, it usually is
not possible to tell which commits prior to the merge were
made on master (green-line before t4) and which were
made on feature (orange-line before t4)

Peril 6: It is not always possible to track the source of
a merge or even determine if a merge occurred.

Typically, when a developer pulls commits from some
branch in a remote git repository to his local repository,
the branch must be merged into the current local working
branch. We’d like to know the source of that merge, both in

Alice's first commit

Bob's first commit
Alice's second commit

Bob's second commit

t1
t2
t3
t4
t5 merge commit

(a) Avoid

Alice's first commit

Bob's first commit
Alice's second commit

Bob's second commit

t1
t2
t3
t4

(b) Perform

Figure 7. Alice’s repository if git was told explicitly to avoid
a fast forward merge (a) and normally, when performing a fast
forward merge (b) after pulling Bob’s changes.

terms of the git repository and branch within that repository.
This is possible under most, but not all, conditions. By
default, git creates a log message for the merge commit with
one of the following forms. Text in brackets may not always
appear.
Merge branch ’branchname’ [into branch_name]

Merge [branch ’branchname’ of] remote_repo_url

Using this information and the relationships between
commits on the DAG, it is possible to see which branches
were merged together and where.

One situation in which detecting a merge is not possible
is when a fast forward merge, depicted in Figure 7, occurs.
Alice makes two commits to her master, which Bob pulls
into his repository and then makes two commits. After t4,
if Alice were to pull Bob’s changes, one would expect her
history to look like figure 7(a). However, nothing changed
in her repository since Bob pulled from it, so no merging
actually needs to take place. Unless git is explicitly told not
to, it adds Bob’s commits in sequence and “fast forwards”
Alice’s HEAD to the last commit pulled from Bob. In this
scenario no merge commit is created.

The situations where the merge source is not available in
the commit messages follow:

1) If a merge of two branches results in a fast forward
merge, no merge commit is created and thus no log
message that contains the string will exist in the log.

2) If there are conflicts during a merge, the developer
will resolve the conflicts and commit their resolution
with a log message that may not include the default
text.

3) If a developer rebases a series of commits which con-
tain branches and merges, the result may be “flattened”
and not include the merge commit.

4) If a developer amends the commit message of a merge
commit to something other than the default merge
message (this is unlikely, but possible).

Figure 8 illustrates this peril. At t3, Bob creates a merge
commit when he pulls from Carol; its commit message
specifies the url of Carol’s repository. Assume that Alice
overwrites the default merge text at t5 when she pulls from
Bob. In Alice’s DAG, it is not trivial to know which branch
is Bob’s and which one is Carol’s. Mining Alice’s repository,
one would miss the fact that Alice pulled from Bob and also



fix null pointer bug

merge git://carol.com/project.git

optimize list traversal

add caching

t1
t2
t3
t4

grabbed changest5

Alice
Bob

Carol

Figure 8. Alice’s repository after pulling from Bob’s reposi-
tory. There is no explicit information in the logs that records
that Alice pulled from Bob, and one can incorrectly infer that
Alice pulled directly from Carol.

might falsely conclude that Alice pulled from Carol. Any
analysis that is based on information about pulls between
repositories should be sensitive to these issues.

In the first two cases above, there is no evidence that a
merge occurred. Since it is not possible to determine how
many merges are being missed due to these constraints,
miners must be careful when performing any analysis that
depends on branching and merging. In the last two, there is
still evidence because there is a commit with two parents,
however source information may be lost. Since the merge
is known in these cases, it is possible to measure the
information loss We found that use of the heuristics works
in 98% of the cases for a sample of 30 git projects. Details
of the analysis and results are presented in section 5.

Promise 3: Git records the information needed to
correct Perils 3–6 in private logs.

When Bob clones Alice and Ram’s repositories, his view
into the history of those repositories is obscured. He cannot
be sure when and from whom Alice and Ram pulled,
when and how they rebased, and so forth. However, this
information is not necessarily lost, even if it is not trivially
accessible. Git stores information about fast-forward merges,
rebases and pulls in a logs directory. In fact, even more
information about a developer’s workflow can be found there
— each checkout is recorded, so a researcher could observe
when a developer switched between branches.

This promises the possibility of mining data that includes
extensive information about developer workflows and project
history, but only under certain conditions. The miner must
have access to the private repository of each developer
whose logs she wishes to mine. Thus, it may well be possible
to write tools that take advantage of this information, for use
by organizations for their internal projects.

In some cases, researchers may be fortunate enough to
have access to, or copies of, some private developer reposi-
tories for projects they wish to mine. When this opportunity
arises, it is important for researchers to realize that a great
deal more information has been made available than from

regular repository cloning.
A caveat exists. Git has a cleanup command, gc. Normal

execution of gc will not disturb the log files, however it
has an aggressive mode which will. If developers have been
running gc --aggressive some of the log entries may
have been deleted.

Peril 7: The accessible data may only contain commits
that are success selected.

History may be lost or modified due to other reasons.
In one workflow, a developer creates a branch that contains
changes to be pulled and reviewed by other developers. Once
the review has occurred, the branch may be destroyed if the
changes are not accepted. Alternately, the developer may
modify the branch through rebasing or adding commits prior
to inclusion. This process is similar to submitting a patch
for review in an SVN project: that patch may be rejected or
eventually committed (after possible modifications). Just as
recovering the patch and review process is difficult in SVN-
based projects [19], [20], a commit’s review history is not
directly reflected in git. Initially, we naı̈vely thought that we
would see more of the review process in the git history. We
have found some success in using mailing lists along with
signed-off-by, reviewed-by, and tested-by fields
when they exist.

Promise 4: The signed-off-by and other attributes
create a “paper trail.”

In response to IP infringement allegations made by SCO,
Linus Torvalds added a facility for people to “sign off” on
a commit by adding a line such as signedoffby John

Doe <jdoe@foobar.com> to the end of a commit message.
There are also other attributes: ackedby, Cc, reportedby,
reviewedby, and testedby. These attributes are explicitly
added to commits using the -s flag and append a line to
the commit log message using a standard format that is easy
to parse. A commit may have multiple fields appended as
it moves from repository to repository and is reviewed and
tested.

This information can be used to (for example) determine
certain roles with a community such as reviewer or tester.
It can also be used to assess expertise within a project or
recreate the organization of the community. We show one
use of this data in determining expertise and visualizing the
linux social organization hierarchy in section 5.

To date, we have observed that few projects outside of
the Linus kernel use these facilities, but we expect that,
as projects with more rigorously enforced policies adopt
git, they will take advantage of this added ability to record
information about the history of a commit.



Promise 5: Git explicitly records authorship informa-
tion for contributors who are not part of the core set of
developers.

In traditional OSS projects that use a centralized SCM,
there is an explicit group of developers that have write access
to the source code repository. The repository logs indicate
which of these developers made each change. However, OSS
projects are heavily dependent on volunteerism [12] and
many community members outside the explicit group of
developers make contributions in the form of patches, often
submitted to the development mailing lists.

If a patch is accepted, it is committed to the repository
by a core developer and the logs indicate that the change is
attributed to that developer. Ideally, we would like to be able
to attribute the source code changes to the person that con-
tributed the change. Unfortunately, detecting the application
of submitted patches is difficult [19]. In some projects such
as Apache, it is commonplace for the developer applying
a submitted patch to include attribution information in the
commit message. However, accuracy of gathered attribution
data is dependent on the project, the developers following the
convention, and standardization of the log message format.
Git repositories have more accurate author information due
to its facilities for explicitly and automatically including
information about the author of a change.

Contributors to git-based projects are able to submit
changes in two ways. Anyone with read access may clone a
public git repository and commit to their own copy. Any
contributor may ask a project developer to pull changes
from his own repository into the main project repository. In
addition, git provides a facility to turn a commit or sequence
of commits into a specially formatted patch that may be
emailed to a project developer and applied to the main
project repository. Even in the case of a patch, the author
information is automatically extracted and preserved when
committed to an “official” repository. This record keeping
is one of the reasons that a git commit has a committer
field that identifies who committed a change to a repository
and an author field, identifying the person who made the
changes. The author information is tied to the commit as it
is transferred from repository to repository. We empirically
examine issues of attribution in in section 5.

4. Mining the Git Gold Vein

Promise 6: In git all metadata, notably history, is local.

When a developer creates a local repository based on
a pre-existing repository all information from the remote
repository is transferred to the local repository. In past

#include <math.h>
int add(int a)
{
...
}

int sub(int a)
{
...
}

void main(){...}

(a) original by Alice

#include <math.h>
int sub(int a)
{
...
}

int add(int a)
{
...
}

void main() {...}

(b) modified by Bob

Figure 9. Two versions of a file

analysis of OSS projects where we have needed to analyze
every version of each file in the repository, we have relied on
third party tools such as CVSsuck [21] or svn::mirror [22]
to create local mirrors so that we can checkout files quickly
and without burdening the official public repository. Unfor-
tunately, we have found these tools to be error prone and
sometimes lossy. In some cases, we have needed to contact
project maintainers to request a copy of their source code
repository. Since all of the information about a git repository
is stored locally, there is no need to make requests or use
third part tools. This benefit is true of all distributed SCMs,
and not unique to git. Of course, the metadata will differ as
repositories in the same project diverge.

Promise 7: Git tracks content, so it can track the
history of lines as they are moved or copied.

Git tracks the history of the content of files. This means
that it is able to tell automatically if a file is renamed because
the content remains the same and the history follows the
content. In SVN, a developer must explicitly renamed a file
in order to maintain the file’s history. In addition, git is able
to track hunks of text within and between files. Consider
the two versions of a file in figure 9. Alice writes the first
version. Bob creates the second version when he moves the
function sub above add without changing its contents.

If svn blame is run to show who introduced each line,
Bob would be indicated as the author of each line in the
function sub. However, git blame -C -M, where -C finds
code copies and -M finds code movement, would indicate
that Alice had written each line of the file. Git also tracks
text that moves between files and text that is copied multiple
times as long as the number of lines moved is above a certain
threshold (we observe the threshold to be around 4 or 5). Of
course, if Bob were to modify a line in the implementation,
even slightly, git would assign authorship of that line to Bob.
Git’s origin analysis is not as accurate as recently introduced
research techniques[23], but it is a dramatic improvement
over SVN.



Promise 8: Git is faster and often uses less space than
centralized repositories.

Git is designed to handle a code base the size of Linux
and manage a high volume of contributions. Since the
metadata is on the local machine, accessing a log or a diff

executes locally, with no network latency. Also, git stores
full (compressed) versions of files, rather than a sequence
of diff s. This means that checking out a file is a constant-
time operation, regardless of history.

We converted the entire Eclipse CVS repository to git
format and noticed that log access and checkouts were
must faster. Checking out commits in an arbitrary (non–
consecutive) order with git took 1–2 minutes per commit
compared to 7–25 minutes with CVS. Checking out consec-
utive commits took 0.5–0.8 seconds per commit with git,
compared to 1–3 minutes with CVS with the repository and
working copy on our server. This makes some forms analysis
that were painful before, feasible.

Despite the design choice to store revisions in their
entirety, git’s wholistic compression strategy uses much less
space than CVS or SVN. The entire Mozilla repository
weighs in at 12 GB when stored in SVN. However, when the
repository was imported into git, that shrunk to 420 MB [24].
We found that the Eclipse CVS repository uses 8.6 GB,
compared to 3.3 GB for git. The python community found
that converting from SVN to git reduced disk usage from
1.3 GB to 150 MB [25].

Promise 9: Most SCMs such as CVS, SVN, Perforce,
and Mercurial (Hg), can be converted to git with the
history of branches, merges and tags intact.

Due to git’s popularity over the past few years, the devel-
opment community surrounding it has developed a number
of tools for migration to git from most popular SCMs3.
Many of these tools are still actively being developed and
are part of the official git distribution. For instance, there are
a number of git svn commands that act as a bidirectional
gateway between a SVN repository and local git repository.
We have successfully converted the entire Eclipse CVS
repository to git complete with tags and branches. We have
also imported the NetBeans and Mozilla-Central’s Mercurial
(Hg) repositories to git as well as numerous other SVN
repositories. By being able to convert nearly all repositories
to git format, we have been able to reap some of the benefits
of git, such as better origin detection, performance, and local
copies of all information. In addition, we only need to write
mining and analysis tools for one format rather than many.

3. See http://git.or.cz/gitwiki/InterfacesFrontendsAndTools for complete
list.
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Figure 10. Authors per month for Ruby on Rails as reported
by the repository logs. The blue dot indicates the date at which
Rails migrated to git.

5. Analysis

Promise 5 claims that the information recorded and the
workflow enabled by git allows more accurate author analy-
sis. To examine this claim, we extracted data from a project
that had used both SVN and git for measurable periods of
time and compared author information. Figure 10 shows
the number of distinct authors by month who contributed
changes to the repository of the Ruby on Rails project. The
dot on the graph indicates when the project migrated to git.
While it is possible that the move to git caused a dramatic
jump in the number of contributors, it seems more likely
that the jump is due to git’s superior facilties for tracking
authorship.

As per Peril 6, log messages in git record sources of
merges. While one can heuristically recover merge infor-
mation from logs, it may be incomplete. We empirically
examined the recall of these heuristics by mining data
from 30 OSS projects that use git listed at http://git.
or.cz/gitwiki/GitProjects ranging in size from 9
authors (disco) to over one thousand (wine) and containing
up to 139,187 commits (samba). In cases where projects
migrated from another SCM, and git imported the history,
we examined just the merges created after the transition
to git. In all, there were 2,971 merges (i.e. commits with
more than one parent). We ignored undetectable fast forward
merges, or merges flattened due to rebasing. Our heuristics
were able to detect the source of the merge in 2,909 of the
cases, yielding a recall of 97.9%. This seems well within an
acceptable range for most uses. However, researchers should
perform similar analyses when interpreting and reporting
results based on sources of merges.

We hypothesized that the use of git may affect workflow
patterns and that developers make smaller and more frequent
commits after a project switches to git from a centralized
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Figure 11. signed-off-by network in the Linux kernel.
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immediately after b.

SCM. We therefore performed an analysis on the size of
commits, measured in LOC added and removed, prior to
and after migration to git for a number of projects. Although
statistically significant, the magnitude of the difference was
uninteresting (only 2 lines less per commit).

To evaluate Promise 4, we studied the attribution data such
as signed-off-by contained in log messages. As part of a
larger study of the development process and workflow within
the Linux kernel, we found that (as an example) the majority
of commits related to non-driver related networking and the
SPARC architecture were signed off by David Miller (69%
and 72% respectively, these two areas accounted for 92%
of his total sign-offs). Of all the files Miller modified 87%
were related to networking, and 10% to SPARC. This result
from git data analysis confirms the folklore that he is both
a gate-keeper and expert in those areas.

The signed-off-by network also allows us to investigate
the relationship between signing-off and authoring con-
tributions. Torvalds has stated that his current role with
Linux is as integrator not developer. Quantitatively we find
that this statement is true: he has authored 632 commits,
performed 4,317 merges, and signed off on 25,456 com-
mits. The non-parametric correlation between the number
of sign-offs to the number of authored contributions in
the entire community was moderate (r = .65, p � .001).
This suggests that developers who are strongly involved in
signing-off (i.e., higher-up in the hierarchy) often do less
development themselves and differentiated roles exist within
the community.

A comprehensive study of position in the “pull network”
and location of files that a developer signs off on helps
identify the load that a community member carries, their
area of expertise, level of status or trust, and role (reviewer
versus committer). We have recreated the signed-off-by
network based on the order that developers have signed off
on commits. A portion of this network including the key
members of the hierarchy and the highest weighted edges
between them is depicted in figure 11.

The data used to perform these analyses was extracted
solely from public git repositories and stored in a Post-
greSQL database using tools that we have written. These
tools are freely available to other researchers at git://

github.com/cabird/git_mining_tools.

6. Conclusion

DSCMs promise new and useful data to help us better
understand software processes. These include accurate au-
thorship information; the ability to identify roles such as
reviewers, committers, and author; differences in repository
content between developers in the same project; and merge
tracking. Like all data, this data must be handled with care.
We have outlined some of the key pitfalls that one can
encounter when mining DSCM data. Notably, the semantics
of a commit and a branch differ between SVN and DSCMs;
some meta-data, such as the DAG can be modified by
developers, and it is often not possible to tell what branch a
commit occurred on (this peril cost us several days of work).

We plan to use this data to address such questions as: 1)
Does the development process or communication network in
a project change when switching from a centralized SCM to
a DSCM? 2) Does the use of a DSCM lead to more focused
development but less project awareness? 3) Do groups of
developers work in concert, separate from the “official”
repository for periods of time? Our hope is that this paper
enhances the ability of other researchers to gather, analyze,
and interpret this data to answer research questions.
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