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Software Architecture Topics

• Terminology and Motivation
• Abstraction
• Intuition About Architecture:

– Hardware
– Network
– Building Architecture
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Software Architecture Topics
• Architectural Styles of Software Systems:

– Repository
– Pipe and Filter

• Case Study of Compiler Architecture
– Object-Oriented
– Implicit Invocation
– Layered
– Interpreter
– Process-Control
– Client/Server
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Software Architecture Topics

• Technologies for Distributed Architectures: 
– IBM’s MQSeries
– OMG’s CORBA
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What is 
Software Architecture?

• The software architecture of a program or 
computing system is the structure (or 
structures) of the system.

• The structures comprise:
– Software components
– Externally visible properties of the components
– Relationships between the components
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Externally Visible 
Properties of Components

• Externally visible properties refers to those 
assumptions other components can make of 
a component, such as:
– Provided services
– Performance characteristics
– Fault handling
– Shared resource usage
– Et cetera
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A Software Architecture 
is an Abstraction

• An architecture is an abstraction of a system 
that suppresses details of components that 
do not affect how they:
– Use
– Are used by
– Relate to
– Interact with 

other components.
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Can a system have 
more that one structure?

• Yes, no one structure holds the claim to 
being the architecture.

• Below are some examples of structures:
– Module decomposition
– Inheritance hierarchy
– Call graph
– Objects and message passing at runtime
– Build dependencies
– Et cetera
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Does Every System have an 
Architecture?

• Yes.
• For small systems the architecture may be 

trivial.
• For large systems it definitely exists in the 

software product, but may not have been 
documented.



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

Are box-and-line diagrams
descriptions of Software Architecture?

• No.
• A description of the behavior of each component 

is part of the architecture.
• In box-and-line diagrams, readers imagine the 

behavior of each component by interpreting the 
labels of the boxes & lines. 

• One must document the extent that a component’s 
behavior influences how another component must 
be written to interact with it.
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Why is Software Architecture 
Important?

• Communication among stakeholders:
– Customers, managers, designers, programmers.

• Documentation of early design decisions:
– Constraints on implementation
– Organizational structure
– Guides evolutionary prototyping

• Transferable abstraction of a system to similar 
systems (reuse):
– Program families share a common architecture
– Architecture can be the basis for training.
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Architectural Structures
(Module Structure)

• Components: work assignments.
– Work assignments have products 

associated with them:
• Interface specifications
• Code
• Test plans, etc.

• Relations: is-a-submodule-of
• Use: Allocating a project’s labor and other 

resources during development and 
maintenance.
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Architectural Structures
(Conceptual or Logical Structure)
• Components: Abstractions of the system’s 

functional requirements.
• Relations: shares-data-with
• Use: Understanding the interactions 

between units in the problem space.
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Architectural Structures
(Process or Coordination Structure)

• Components: Processes or threads.
• Relations:

– Synchronizes-with
– Can’t-run-without
– Can’t-run-with
– Preempts, et cetera

• Use: Modeling dynamic aspects of a 
running system.



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

Architectural Structures
(Physical Structure)

• Components: Hardware (computers, 
networks, etc.)

• Relations: communicates-with
• Use: Create models to reason about 

performance, availability, security, etc.
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Architectural Structures
(Uses Structure)

• Components: procedures or modules
• Relations: assumes-the-correct-presence-of
• Use: To model system extendibility and 

incremental system building (e.g., Makefile 
dependencies).
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Architectural Structures
(Calls Structure)

• Components: Procedures
• Relations: calls
• Uses: To model trace of execution in a 

program.
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Architectural Structures
(Data Flow Structure)

• Components: Programs or modules
• Relations: transmits-data-to
• Use: To model data transmission which can 

aid requirements traceability.
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Architectural Structures
(Class Structure)

• Components: classes and interfaces
• Relations: inherits-from, implements
• Use: To model collections of similar 

behavior and parameterizes differences.
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The Importance of Structures

• Structures are important because they “boil 
away” details about the software that are 
independent of the concern  reflected by the 
abstraction.

• Each structure provides a useful perspective 
of the system.

• Sometimes the term view is used instead of 
structure.
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Abstraction
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Abstraction

• One characterization of progress in software 
development has been the regular increase 
in levels of abstraction:
– I.e., the size of a software designer’s building 

blocks.
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Abstraction (Cont’d)

• Early 1950s: Software was written in 
machine language:
– programmers placed instructions and data 

individually and explicitly in the computer’s 
memory

– insertion of a new instruction in a program 
might require hand checking the entire program 
to update references to data and instructions
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Assemblers
• Some machine code programming problems 

were solved by adding a level of abstraction 
between the program and the machine:
– Symbolic Assemblers:

• Names used for operation codes and memory 
addresses. 

• Memory layout and update of references are 
automated.

– Macro Processors:
• Allow a single symbol to stand for a commonly used 

sequence of instructions.
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Programming Languages

• Late 1950s: The emerging of the first high-
level programming languages.  Well 
understood patterns are created from 
notations that are more like mathematics 
than machine code.
– evaluation of arithmetic expressions
– procedure invocation
– loops and conditionals
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Programming Languages 
(Cont’d)

• FORTRAN becomes the first widely used 
programming language.

• Algol and its successors followed with 
higher-levels of abstraction for representing 
data (types).
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Abstract Data Types

• Late 1960s and 1970s: Programmers 
shared an intuition that good data structure 
design will ease the development of a 
program.

• This intuition was converted into theories of 
modularization and information hiding.
– Data and related code are encapsulated into 

modules.
– Interfaces to modules are made explicit.
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Abstract Data Types (Cont’d)

• Programming Languages:
– Modula
– Ada
– Euclid 

• Module Interconnection Languages:
– MIL75
– Intercol 
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Software Architecture

• As the size and complexity of software 
systems increases, the design problem goes 
beyond algorithms and data structures.

• Designing and specifying the overall system 
structure (Software Architecture) emerges 
as a new kind of problem.
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Software Architecture Issues

• Organization and global control structure.
• Protocols of communication, 

synchronization, and data access.
• Assignment of functionality to design 

elements.
• Physical distribution of data and processes.
• Selection among design alternatives.
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State of Practice
• There is not currently a well-defined 

terminology or notation to characterize 
architectural structures.

• However, good software engineers make 
common use of architectural principles 
when designing software.

• These principles represent rules of thumb or 
patterns that have emerged informally over 
time.  Others are more carefully 
documented as industry standards.
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Descriptions of Architectures

• “Camelot is based on the client-server 
model and uses remote procedure calls both 
locally and remotely to provide 
communication among applications and 
servers.”
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Descriptions of Architectures 
(Cont’d)

• “Abstraction layering and system 
decomposition provide the appearance of 
system uniformity to clients, yet allow Helix 
to accommodate a diversity of autonomous 
devices.  The architecture encourages a 
client-server model for the structuring of 
applications.”
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Descriptions of Architectures 
(Cont’d)

• “We have chosen a distributed, object-
oriented approach to managing 
information.”



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

Descriptions of Architectures 
(Cont’d)

• “The easiest way to make a canonical sequential 
compiler into a concurrent compiler is to pipeline
the execution of the compiler phases over a 
number of processors.  A more effective way is to 
split the source code into many segments, which 
are concurrently processed through the various 
phases of compilation (by multiple compiler 
processes) before a final, merging pass 
recombines the object code into a single 
program.”
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Some Standard Architectures

• ISO/OSI Reference Model is a layered 
network architecture.

• X Window System is a distributed 
windowed user interface architecture based 
on event triggering and callbacks.

• NIST/ECMA Reference Model is a 
generic software engineering environment 
architecture based on layered 
communication substrates.
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Intuition About Architecture
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Intuition About Architecture
• It is interesting that we have so few named

software architectures.  This is not because 
there are so few architectures, but so many.

• Next we look at several architectural 
disciplines in order to develop an intuition 
about software architecture:
– Hardware Architecture
– Network Architecture
– Building Architecture
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Hardware Architecture

• RISC machines emphasize the instruction 
set as an important feature.

• Pipelined and multi-processor machines 
emphasize the configuration of architectural 
pieces of the hardware.
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Differences and Similarities 
Between SW & HW Architectures

• Differences:
– Relatively (to software) small number of design 

elements.
– Scale is achieved by replication of design 

elements.
• Similarities:

– We often configure software architectures in 
ways analogous to hardware architectures.  
(e.g., we create multi-process software and use 
pipelined processing).
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Network Architecture
• Networked architectures abstract the design 

elements of a network into nodes and 
connections.

• Topology is the most emphasized aspect:
– Star networks
– Ring networks
– Manhattan Street networks

• Unlike software architectures, in network 
architectures only few topologies are of 
interest.
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Building Architecture

• Multiple Views: skeleton frames, detailed 
views of electrical wiring, etc.

• Architectural Styles: Classical, 
Romanesque, Colonial, and so on.

• Materials: One does not build a skyscraper 
using wooden posts and beams.
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Architectural Styles 
of Software Systems
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Architectural Styles of 
Software Systems

• An Architectural Style defines a family of 
systems in terms of a pattern of structural 
organization.  It determines:
– the vocabulary of components and connectors 

that can be used in instances of that style 
– a set of constraints on how they can be 

combined.  For example, one might constrain:
• the topology of the descriptions (e.g., no cycles).
• execution semantics (e.g., processes execute in 

parallel).
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Determining an 
Architectural Style

• We can understand what a style is by 
answering the following questions:
– What is the structural pattern?                   

(i.e., components, connectors, constraints)
– What is the underlying computational model?
– What are the essential invariants of the style?
– What are some common examples of its use?
– What are the advantages and disadvantages of 

using that style?
– What are some of the common specializations

of that style?
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Describing an Architectural Style

• The architecture of a specific system is a 
collection of:
– computational components 
– description of the interactions between these 

components (connectors)
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Describing an 
Architectural Style (Cont’d)

• Software architectures are represented as 
graphs where nodes represent components:

• procedures
• modules
• processes
• tools
• databases

• and edges represent connectors:
• procedure calls
• event broadcasts
• database queries
• pipes
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Repository Style

• Suitable for applications in which the 
central issue is establishing, augmenting, 
and maintaining a complex central body of 
information.

• Typically the information must be 
manipulated in a variety of ways.  Often 
long-term persistence is required.
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Repository Style (Cont’d)

• Components:
– A central data structure representing the current 

state of the system.
– A collection of independent components that 

operate on the central data structure.
• Connectors: 

– Typically procedure calls or direct memory 
accesses.
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Repository Style (Cont’d)

Shared Data

Memory

Memory Access
Computation
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Repository Style Specializations

• Changes to the data structure trigger 
computations.

• Data structure in memory (persistent 
option).

• Data structure on disk.
• Concurrent computations and data accesses.
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Repository Style Examples

• Information Systems
• Programming Environments
• Graphical Editors
• AI Knowledge Bases
• Reverse Engineering Systems
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Repository Style Advantages

• Efficient way to store large amounts of 
data.

• Sharing model is published as the 
repository schema.

• Centralized management:
– backup
– security
– concurrency control
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Repository Style Disadvantages

• Must agree on a data model a priori.
• Difficult to distribute data.
• Data evolution is expensive.
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Pipe and Filter 
Architectural Style

• Suitable for applications that require a 
defined series of independent computations 
to be performed on data.

• A component reads streams of data as input 
and produces streams of data as output.



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

Pipe and Filter 
Architectural Style (Cont’d)

• Components: called filters, apply local 
transformations to their input streams and 
often do their computing incrementally so 
that output begins before all input is 
consumed.

• Connectors: called pipes, serve as conduits 
for the streams, transmitting outputs of one 
filter to inputs of another filter.
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Pipe and Filter 
Architectural Style (Cont’d)

filter

pipes
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Pipe and Filter Invariants 
• Filters do not share state with other filters.
• Filters do not know the identity of their 

upstream or downstream filters.
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Pipe and Filter Specializations

• Pipelines: Restricts topologies to linear 
sequences of filters.

• Batch Sequential: A degenerate case of a 
pipeline architecture where each filter 
processes all of its input data before 
producing any output.
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Pipe and Filter Examples

• Unix Shell Scripts: Provides a notation for 
connecting Unix processes via pipes.
– cat file  |  grep Erroll  |  wc -l 

• Traditional Compilers: Compilation 
phases are pipelined, though the phases are 
not always incremental.  The phases in the 
pipeline include:
– lexical analysis + parsing + semantic analysis 

+ code generation
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Pipe and Filter Advantages

• Easy to understand the overall 
input/output behavior of a system as a 
simple composition of the behaviors of the 
individual filters.

• They support reuse, since any two filters 
can be hooked together, provided they agree 
on the data that is being transmitted 
between them.
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Pipe and Filter
Advantages (Cont’d)

• Systems can be easily maintained and 
enhanced, since new filters can be added to 
existing systems and old filters can be 
replaced by improved ones.

• They permit certain kinds of specialized 
analysis, such as throughput and deadlock 
analysis.

• The naturally support concurrent 
execution.
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Pipe and Filter Disadvantages

• Not good choice for interactive systems, 
because of their transformational character.

• Excessive parsing and unparsing leads to 
loss of performance and increased 
complexity in writing the filters 
themselves.
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Case Study:
Architecture of a Compiler

• The architecture of a system can change in 
response to improvements in technology.  

• This can be seen in the way we think about 
compilers.
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Early Compiler Architectures

• In the 1970s, compilation was regarded as a 
sequential (batch sequential or pipeline) 
process:

Lex Syn Sem Opt CGentext code
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Early Compiler Architectures

• Most compilers create a separate symbol 
table during lexical analysis and used or 
updated it during subsequent passes.

Symbol Table

Lex Syn Sem Opt CGentext code
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Modern Compiler Architectures
• Later, in the mid 1980s, increasing attention 

turned to the intermediate representation of 
the program during compilation.

Symbol Table

Lex Sem CGen
codetext

Attributed 
Parse Tree

OptSyn
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Hybrid Compiler Architectures

• The new view accommodates various tools 
(e.g., syntax-directed editors) that operate 
on the internal representation rather than the 
textual form of a program.

• Architectural shift to a repository style, 
with elements of the pipeline style, since 
the order of execution of the processes is 
still predetermined.
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Hybrid Compiler Architectures

Lex Syn Sem Opt Cgen

Edit Flow

Attributed
Parse Tree

Symbol Table
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Object-Oriented Style

• Suitable for applications in which a central 
issue is identifying and protecting related 
bodies of information (data).

• Data representations and their associated 
operations are encapsulated in an abstract 
data type.

• Components: are objects.
• Connectors: are function and procedure 

invocations (methods).
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Object-Oriented Style (Cont’d)

obj

obj

obj

obj

obj

obj
obj

obj

object
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Object-Oriented Invariants

• Objects are responsible for preserving the 
integrity (e.g., some invariant) of the data 
representation.

• The data representation is hidden from 
other objects.
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Object-Oriented Specializations

• Distributed Objects
• Objects with Multiple Interfaces
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Object-Oriented Advantages

• Because an object hides its data 
representation from its clients, it is possible 
to change the implementation without 
affecting those clients.

• Can design systems as collections of 
autonomous interacting agents.
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Object-Oriented Disadvantages
• In order for one object to interact with 

another object (via a method invocation) the 
first object must know the identity of the 
second object.
– Contrast with Pipe and Filter Style.
– When the identity of an object changes, it is 

necessary to modify all objects that invoke it.
• Objects cause side effect problems:

– E.g., A and B both use object C, then B’s effects 
on C look like unexpected side effects to A.
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Implicit Invocation Style

• Suitable for applications that involve 
loosely-coupled collection of components, 
each of which carries out some operation 
and may in the process enable other 
operations.

• Particularly useful for applications that must 
be reconfigured “on the fly”:
– Changing a service provider.
– Enabling or disabling capabilities.
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Implicit Invocation Style (Cont’d)

• Instead of invoking a procedure directly ... 
– A component can announce (or broadcast) one 

or more events.
– Other components in the system can register an 

interest in an event by associating a procedure 
with the event.

– When an event is announced, the broadcasting 
system (connector) itself invokes all of the 
procedures that have been registered for the 
event.
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Implicit Invocation Style (Cont’d)

• An event announcement “implicitly” causes 
the invocation of procedures in other 
modules.

procedure procedure procedure

Broadcasting System
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Implicit Invocation Invariants
• Announcers of events do not know which 

components will be affected by those 
events.

• Components cannot make assumptions 
about the order of processing.

• Components cannot make assumptions 
about what processing will occur as a result 
of their events (perhaps no component will 
respond).



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

Implicit Invocation 
Specializations

• Often connectors in an implicit invocation 
system include the traditional procedure 
call in addition to the bindings between 
event announcements and procedure calls.
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Implicit Invocation Examples

• Used in programming environments to 
integrate tools:
– Debugger stops at a breakpoint and makes that 

announcement.
– Editor responds to the announcement by 

scrolling to the appropriate source line of the 
program and highlighting that line.
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Implicit Invocation 
Examples (Cont’d)

• Used to enforce integrity constraints in 
database management systems (called 
triggers).

• Used in user interfaces to separate the 
presentation of data from the applications 
that manage that data.
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Implicit Invocation Advantages

• Provides strong support for reuse since any 
component can be introduced into a system 
simply by registering it for the events of 
that system.

• Eases system evolution since components 
may be replaced by other components 
without affecting the interfaces of other 
components in the system.
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Implicit Invocation 
Disadvantages

• When a component announces an event:
– it has no idea what other components will 

respond to it, 
– it cannot rely on the order in which the 

responses are invoked
– it cannot know when responses are finished
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Layered Style

• Suitable for applications that involve 
distinct classes of services that can be 
organized hierarchically.

• Each layer provides service to the layer 
above it and serves as a client to the layer 
below it.

• Only carefully selected procedures from the 
inner layers are made available (exported) 
to their adjacent outer layer.
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Layered Style (Cont’d)

• Components: are typically collections of 
procedures.

• Connectors: are typically procedure calls 
under restricted visibility.
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Layered Style (Cont’d)
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Layered Style Specializations

• Often exceptions are made to permit non-
adjacent layers to communicate directly.  
– This is usually done for efficiency reasons.
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Layered Style Examples

• Layered Communication Protocols:  
– Each layer provides a substrate for 

communication at some level of abstraction.
– Lower levels define lower levels of interaction, 

the lowest level being hardware connections 
(physical layer).

• Operating Systems
– Unix
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Unix Layered Architecture
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Layered Style Advantages

• Design: based on increasing levels of 
abstraction.

• Enhancement: Changes to the function of 
one layer affects at most two other layers.

• Reuse: Different implementations (with 
identical interfaces) of the same layer can 
be used interchangeably.
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Layered Style Disadvantages

• Not all systems are easily structured in a 
layered fashion.

• Performance requirements may force the 
coupling of high-level functions to their 
lower-level implementations.
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Interpreter Style

• Suitable for applications in which the most 
appropriate language or machine for 
executing the solution is not directly 
available.
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Interpreter Style (Cont’d)

• Components: include one state machine 
for the execution engine and three 
memories:
– current state of the execution engine
– program being interpreted
– current state of the program being interpreted

• Connectors:
– procedure calls
– direct memory accesses.
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Interpreter Style (Cont’d)
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Interpreter Style Examples
• Programming Language Compilers:

– Java
– Smalltalk

• Rule Based Systems:
– Prolog
– Coral

• Scripting Languages:
– Awk
– Perl
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Interpreter Style Advantages

• Simulation of non-implemented hardware.
• Facilitates portability of application or 

languages across a variety of platforms.
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Java Architecture
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Interpreter Style Disadvantages

• Extra level of indirection slows down 
execution.

• Java has an option to compile code.
– JIT (Just In Time) compiler.
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Process-Control Style

• Suitable for applications whose purpose is 
to maintain specified properties of the 
outputs of the process at (sufficiently near) 
given reference values.

• Components:
– Process Definition includes mechanisms for 

manipulating some process variables.
– Control Algorithm for deciding how to 

manipulate process variables.
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Process-Control Style (Cont’d)
• Connectors: are the data flow relations for:

– Process Variables:
• Controlled variable whose value the system is 

intended to control.
• Input variable that measures an input to the process.
• Manipulated variable whose value can be changed 

by the controller.
– Set Point is the desired value for a controlled 

variable.
– Sensors to obtain values of process variables 

pertinent to control.
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Feed-Back Control System

• The controlled variable is measured and the 
result is used to manipulate one or more of 
the process variables.
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Open-Loop Control System

• Information about process variables is not 
used to adjust the system.
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controlled
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Process Control Examples
• Real-Time System Software to Control:

– Automobile Anti-Lock Brakes
– Nuclear Power Plants
– Automobile Cruise-Control

desired
speed

pulses from wheel

Controller

active/inactive
variables Engine
throttle
setting

wheel
rotation
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Client-Server Style
• Suitable for applications that involve 

distributed data and processing across a 
range of components.

• Components:
– Servers: Stand-alone components that provide 

specific services such as printing, data 
management, etc.

– Clients: Components that call on the services 
provided by servers.

• Connector: The network, which allows 
clients to access remote servers.
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Client-Server Style
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Client-Server Style Examples

• File Servers:
– Primitive form of data service.
– Useful for sharing files across a network.
– The client passes requests for files over the 

network to the file server.
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Client-Server Style 
Examples (Cont’d)

• Database Servers:
– More efficient use of distributing power than 

file servers.
– Client passes SQL requests as messages to the 

DB server; results are returned over the 
network to the client.

– Query processing done by the server.
– No need for large data transfers.
– Transaction DB servers also available.
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Client-Server Style 
Examples (Cont’d)

• Object Servers:
– Objects work together across machine and 

network boundaries.
– ORBs allow objects to communicate with each 

other across the network.
– IDLs define interfaces of objects that 

communicate via the ORB.
– ORBs are the evolution of the RPC.
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RPCs Versus ORBs
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Client-Server Advantages

• Straightforward distribution of data.
• Transparency of location.
• Mix and match heterogeneous platforms,
• Easy to add new servers or upgrade existing 

servers.
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Client-Server Disadvantages

• Performance of the system depends on the 
performance of the network.

• Tricky to design and implement C/S 
systems.

• Unless there is a central register of names 
and services, it may be hard to find out what 
services are available.
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Technologies for Distributed 
Architectures
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IBM’s MQSeries

• MQSeries provides application-
programming services that enable programs 
to communicate with each other in a 
distributed fashion using messages and 
queues.  

• This kind of communication is called 
asynchronous messaging.
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IBM’s MQSeries (Cont’d)

• The MQSeries software enables 
applications to exchange information across 
more than 25 different operating system 
platforms.

• This flexibility allows MQSeries 
applications to run on hardware ranging 
from modest desktops to high-end 
mainframe computers.
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MQSeries Components

• Queue Managers manage one or more 
queues and ensure that messages are put on 
the correct queue or that they are routed to 
another (remote) queue manager.

• Applications must make a successful 
connection to a queue manager before they 
can put or get messages to or from a queue.  
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MQSeries Applications

• An application can only connect to one 
queue manager at a time. 

• Before an application can use a queue, it 
must open a queue for putting, getting, or 
both putting and getting messages.  
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MQSeries Queued Messages

• A queued message consists of two parts: 
– The first part includes application-specific data 

contained in a buffer.
– The second part includes control information, 

such as a message type, destination, and various 
other options.
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Programs Communicating via a 
Queue on the Same Workstation
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Programs Communicating via a 
Queue on the Same Workstation

• Figure illustrates two programs A and B
that are communicating through a managed 
message queue.  

• In this example, A, B, and the queue 
manager are all executing on the same 
workstation. 

• The communication between the programs 
is conducted through a queue onto which 
program A puts messages and from which 
program B gets messages.
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Programs Communicating via a 
Queue on Different Workstations
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Programs Communicating via a 
Queue on Different Workstations
• Figure illustrates two programs A and B

that are communicating through a managed 
message queue.  

• A,B are executing on different workstations.
• Program A puts a message onto the queue, 

specifying not a local queue but a local 
definition of a remote queue.
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Programs Communicating via a 
Queue on Different Workstations
• The local queue definition identifies a non-

local queue that is managed by another 
queue manager.  

• The queue manager, to which program A is 
connected to, puts the message on a special 
queue called a transmission queue.  

• The message is then automatically sent 
along a defined channel that connects the 
two queue managers.  
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Programs Communicating via a 
Queue on Different Workstations
• If for some reason the channel is not active 

(possibly due to a network failure) the 
message remains on the transmission queue.

• The message will be sent automatically 
when the channel is available again. 



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

Programs Communicating via a 
Queue on Different Workstations
• The destination queue manager puts the 

message on the queue that is specified by 
program A.  

• Once a message is placed on the destination 
queue, the queue manager can invoke 
program B automatically and B can then get 
the queued message.
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Scaling-Up to Multiple Queues 
and Services
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OMG’s CORBA

• The Common Object Request Broker 
Architecture (CORBA) is a standard 
distributed object architecture developed by 
the Object Management Group (OMG) 
consortium. 
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CORBA Objects

• CORBA objects can:
– be located anywhere on the network, 
– interoperate with objects on other platforms,
– be written in a variety of programming 

languages:
• Java
• C++
• C
• Smalltalk
• COBOL
• Ada.
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CORBA Messages

• Distributed objects in a CORBA system 
communicate by sending messages to each 
other.  

• These messages, however, are not queued, 
as is the case with MQSeries. 



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

CORBA Method Request

Stubs

Client

ORB

Object Reference

Server

Skeletons

ORB

Servant

Network Message
(TCP/IP, SPX/ISX, ...)

Method Requests



© SERGSoftware  Design  (Software  Architecture)Software  Design  (Software  Architecture)

CORBA Method Request (Cont’d)

• The Figure shows how a message from a 
client object is sent to a server object.  

• In order for a client to access a remote 
server object, it must first obtain a handle 
(object reference) to that object. 

• If the server object is remote, the handle 
points to a stub function, which uses the 
Object Request Broker (ORB) service to 
forward invocations to the server object. 
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CORBA Stubs
• After the stub establishes a connection to 

the server, it sends the following to the 
destination object:
– an object reference,
– an encoded representation of the method, 
– parameters to the skeleton code linked.
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CORBA Skeletons

• The skeleton code transforms the call and 
parameters into the required 
implementation-specific format before 
calling the object.
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CORBA Platform Independence

• The client is unaware of the CORBA 
object’s location, implementation details, 
and which ORB is used to access the object.  

• The connections between distributed objects 
are managed through a name server.  
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CORBA IDL and IIOP

• The client may only invoke methods that 
are specified in the CORBA object’s 
interface.

• Object interfaces are defined using OMG’s 
Interface Definition Language (IDL).

• Different ORBs communicate via the 
Internet InterORB Protocol (IIOP).
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Server Objects in CORBA

• The server side ORB receives the request 
over a network connection and then 
determines which of the objects on its 
machine is the target.  

• When the ORB locates the object, it must 
prepare it to receive the request. E.g., 
– Start a server process that contains the object. 
– Retrieve the object from persistent storage.
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Hiding Services Behind an 
Object Adapter
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Object Adapters in CORBA

• The Figure shows how an adapter can act as 
a proxy between a set of services and the 
ORB.  

• Clients will access each service through the 
adapter that is responsible for that service.  

• The adapter will be responsible for finding 
the appropriate filters to handle each client 
request.  
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Object Adapters in CORBA (Cont’d)
• These filters may be:

– on the same machine as the adapter, 
– or may be on another machine, in which case 

the adapter must delegate the client request to 
another adapter.
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