
CISC 326
Game Architecture

Module 04:
Architecture Styles
Ahmed E. Hassan

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Design

Topics in
Architectural Design

Material drawn from [Bass et al. 98, Shaw96, CORBA98,
CORBA96, IBM98, Gamma95, JavaIDL98]
[Slides by Spiros Mancoridis]

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Software Architecture Topics

• Terminology and Motivation
• Abstraction
• Intuition About Architecture:

– Hardware
– Network
– Building Architecture

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Software Architecture Topics
• Architectural Styles of Software Systems:

– Repository
– Pipe and Filter

• Case Study of Compiler Architecture
– Object-Oriented
– Implicit Invocation
– Layered
– Interpreter
– Process-Control
– Client/Server

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Software Architecture Topics

• Technologies for Distributed Architectures:
– IBM’s MQSeries
– OMG’s CORBA

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

What is
Software Architecture?

• The software architecture of a program or
computing system is the structure (or
structures) of the system.

• The structures comprise:
– Software components
– Externally visible properties of the components
– Relationships between the components

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Externally Visible
Properties of Components

• Externally visible properties refers to those
assumptions other components can make of
a component, such as:
– Provided services
– Performance characteristics
– Fault handling
– Shared resource usage
– Et cetera

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

A Software Architecture
is an Abstraction

• An architecture is an abstraction of a system
that suppresses details of components that
do not affect how they:
– Use
– Are used by
– Relate to
– Interact with

other components.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Can a system have
more that one structure?

• Yes, no one structure holds the claim to
being the architecture.

• Below are some examples of structures:
– Module decomposition
– Inheritance hierarchy
– Call graph
– Objects and message passing at runtime
– Build dependencies
– Et cetera

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Does Every System have an
Architecture?

• Yes.
• For small systems the architecture may be

trivial.
• For large systems it definitely exists in the

software product, but may not have been
documented.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Are box-and-line diagrams
descriptions of Software Architecture?

• No.
• A description of the behavior of each component

is part of the architecture.
• In box-and-line diagrams, readers imagine the

behavior of each component by interpreting the
labels of the boxes & lines.

• One must document the extent that a component’s
behavior influences how another component must
be written to interact with it.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Why is Software Architecture
Important?

• Communication among stakeholders:
– Customers, managers, designers, programmers.

• Documentation of early design decisions:
– Constraints on implementation
– Organizational structure
– Guides evolutionary prototyping

• Transferable abstraction of a system to similar
systems (reuse):
– Program families share a common architecture
– Architecture can be the basis for training.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Module Structure)

• Components: work assignments.
– Work assignments have products

associated with them:
• Interface specifications
• Code
• Test plans, etc.

• Relations: is-a-submodule-of
• Use: Allocating a project’s labor and other

resources during development and
maintenance.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Conceptual or Logical Structure)
• Components: Abstractions of the system’s

functional requirements.
• Relations: shares-data-with
• Use: Understanding the interactions

between units in the problem space.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Process or Coordination Structure)

• Components: Processes or threads.
• Relations:

– Synchronizes-with
– Can’t-run-without
– Can’t-run-with
– Preempts, et cetera

• Use: Modeling dynamic aspects of a
running system.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Physical Structure)

• Components: Hardware (computers,
networks, etc.)

• Relations: communicates-with
• Use: Create models to reason about

performance, availability, security, etc.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Uses Structure)

• Components: procedures or modules
• Relations: assumes-the-correct-presence-of
• Use: To model system extendibility and

incremental system building (e.g., Makefile
dependencies).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Calls Structure)

• Components: Procedures
• Relations: calls
• Uses: To model trace of execution in a

program.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Data Flow Structure)

• Components: Programs or modules
• Relations: transmits-data-to
• Use: To model data transmission which can

aid requirements traceability.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Structures
(Class Structure)

• Components: classes and interfaces
• Relations: inherits-from, implements
• Use: To model collections of similar

behavior and parameterizes differences.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

The Importance of Structures

• Structures are important because they “boil
away” details about the software that are
independent of the concern reflected by the
abstraction.

• Each structure provides a useful perspective
of the system.

• Sometimes the term view is used instead of
structure.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Abstraction

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Abstraction

• One characterization of progress in software
development has been the regular increase
in levels of abstraction:
– I.e., the size of a software designer’s building

blocks.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Abstraction (Cont’d)

• Early 1950s: Software was written in
machine language:
– programmers placed instructions and data

individually and explicitly in the computer’s
memory

– insertion of a new instruction in a program
might require hand checking the entire program
to update references to data and instructions

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Assemblers
• Some machine code programming problems

were solved by adding a level of abstraction
between the program and the machine:
– Symbolic Assemblers:

• Names used for operation codes and memory
addresses.

• Memory layout and update of references are
automated.

– Macro Processors:
• Allow a single symbol to stand for a commonly used

sequence of instructions.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programming Languages

• Late 1950s: The emerging of the first high-
level programming languages. Well
understood patterns are created from
notations that are more like mathematics
than machine code.
– evaluation of arithmetic expressions
– procedure invocation
– loops and conditionals

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programming Languages
(Cont’d)

• FORTRAN becomes the first widely used
programming language.

• Algol and its successors followed with
higher-levels of abstraction for representing
data (types).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Abstract Data Types

• Late 1960s and 1970s: Programmers
shared an intuition that good data structure
design will ease the development of a
program.

• This intuition was converted into theories of
modularization and information hiding.
– Data and related code are encapsulated into

modules.
– Interfaces to modules are made explicit.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Abstract Data Types (Cont’d)

• Programming Languages:
– Modula
– Ada
– Euclid

• Module Interconnection Languages:
– MIL75
– Intercol

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Software Architecture

• As the size and complexity of software
systems increases, the design problem goes
beyond algorithms and data structures.

• Designing and specifying the overall system
structure (Software Architecture) emerges
as a new kind of problem.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Software Architecture Issues

• Organization and global control structure.
• Protocols of communication,

synchronization, and data access.
• Assignment of functionality to design

elements.
• Physical distribution of data and processes.
• Selection among design alternatives.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

State of Practice
• There is not currently a well-defined

terminology or notation to characterize
architectural structures.

• However, good software engineers make
common use of architectural principles
when designing software.

• These principles represent rules of thumb or
patterns that have emerged informally over
time. Others are more carefully
documented as industry standards.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Descriptions of Architectures

• “Camelot is based on the client-server
model and uses remote procedure calls both
locally and remotely to provide
communication among applications and
servers.”

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Descriptions of Architectures
(Cont’d)

• “Abstraction layering and system
decomposition provide the appearance of
system uniformity to clients, yet allow Helix
to accommodate a diversity of autonomous
devices. The architecture encourages a
client-server model for the structuring of
applications.”

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Descriptions of Architectures
(Cont’d)

• “We have chosen a distributed, object-
oriented approach to managing
information.”

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Descriptions of Architectures
(Cont’d)

• “The easiest way to make a canonical sequential
compiler into a concurrent compiler is to pipeline
the execution of the compiler phases over a
number of processors. A more effective way is to
split the source code into many segments, which
are concurrently processed through the various
phases of compilation (by multiple compiler
processes) before a final, merging pass
recombines the object code into a single
program.”

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Some Standard Architectures

• ISO/OSI Reference Model is a layered
network architecture.

• X Window System is a distributed
windowed user interface architecture based
on event triggering and callbacks.

• NIST/ECMA Reference Model is a
generic software engineering environment
architecture based on layered
communication substrates.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Intuition About Architecture

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Intuition About Architecture
• It is interesting that we have so few named

software architectures. This is not because
there are so few architectures, but so many.

• Next we look at several architectural
disciplines in order to develop an intuition
about software architecture:
– Hardware Architecture
– Network Architecture
– Building Architecture

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Hardware Architecture

• RISC machines emphasize the instruction
set as an important feature.

• Pipelined and multi-processor machines
emphasize the configuration of architectural
pieces of the hardware.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Differences and Similarities
Between SW & HW Architectures

• Differences:
– Relatively (to software) small number of design

elements.
– Scale is achieved by replication of design

elements.
• Similarities:

– We often configure software architectures in
ways analogous to hardware architectures.
(e.g., we create multi-process software and use
pipelined processing).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Network Architecture
• Networked architectures abstract the design

elements of a network into nodes and
connections.

• Topology is the most emphasized aspect:
– Star networks
– Ring networks
– Manhattan Street networks

• Unlike software architectures, in network
architectures only few topologies are of
interest.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Building Architecture

• Multiple Views: skeleton frames, detailed
views of electrical wiring, etc.

• Architectural Styles: Classical,
Romanesque, Colonial, and so on.

• Materials: One does not build a skyscraper
using wooden posts and beams.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Styles
of Software Systems

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Styles of
Software Systems

• An Architectural Style defines a family of
systems in terms of a pattern of structural
organization. It determines:
– the vocabulary of components and connectors

that can be used in instances of that style
– a set of constraints on how they can be

combined. For example, one might constrain:
• the topology of the descriptions (e.g., no cycles).
• execution semantics (e.g., processes execute in

parallel).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Determining an
Architectural Style

• We can understand what a style is by
answering the following questions:
– What is the structural pattern?

(i.e., components, connectors, constraints)
– What is the underlying computational model?
– What are the essential invariants of the style?
– What are some common examples of its use?
– What are the advantages and disadvantages of

using that style?
– What are some of the common specializations

of that style?

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Describing an Architectural Style

• The architecture of a specific system is a
collection of:
– computational components
– description of the interactions between these

components (connectors)

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Describing an
Architectural Style (Cont’d)

• Software architectures are represented as
graphs where nodes represent components:

• procedures
• modules
• processes
• tools
• databases

• and edges represent connectors:
• procedure calls
• event broadcasts
• database queries
• pipes

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Repository Style

• Suitable for applications in which the
central issue is establishing, augmenting,
and maintaining a complex central body of
information.

• Typically the information must be
manipulated in a variety of ways. Often
long-term persistence is required.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Repository Style (Cont’d)

• Components:
– A central data structure representing the current

state of the system.
– A collection of independent components that

operate on the central data structure.
• Connectors:

– Typically procedure calls or direct memory
accesses.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Repository Style (Cont’d)

Shared Data

Memory

Memory Access
Computation

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Repository Style Specializations

• Changes to the data structure trigger
computations.

• Data structure in memory (persistent
option).

• Data structure on disk.
• Concurrent computations and data accesses.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Repository Style Examples

• Information Systems
• Programming Environments
• Graphical Editors
• AI Knowledge Bases
• Reverse Engineering Systems

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Repository Style Advantages

• Efficient way to store large amounts of
data.

• Sharing model is published as the
repository schema.

• Centralized management:
– backup
– security
– concurrency control

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Repository Style Disadvantages

• Must agree on a data model a priori.
• Difficult to distribute data.
• Data evolution is expensive.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter
Architectural Style

• Suitable for applications that require a
defined series of independent computations
to be performed on data.

• A component reads streams of data as input
and produces streams of data as output.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter
Architectural Style (Cont’d)

• Components: called filters, apply local
transformations to their input streams and
often do their computing incrementally so
that output begins before all input is
consumed.

• Connectors: called pipes, serve as conduits
for the streams, transmitting outputs of one
filter to inputs of another filter.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter
Architectural Style (Cont’d)

filter

pipes

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter Invariants
• Filters do not share state with other filters.
• Filters do not know the identity of their

upstream or downstream filters.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter Specializations

• Pipelines: Restricts topologies to linear
sequences of filters.

• Batch Sequential: A degenerate case of a
pipeline architecture where each filter
processes all of its input data before
producing any output.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter Examples

• Unix Shell Scripts: Provides a notation for
connecting Unix processes via pipes.
– cat file | grep Erroll | wc -l

• Traditional Compilers: Compilation
phases are pipelined, though the phases are
not always incremental. The phases in the
pipeline include:
– lexical analysis + parsing + semantic analysis

+ code generation

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter Advantages

• Easy to understand the overall
input/output behavior of a system as a
simple composition of the behaviors of the
individual filters.

• They support reuse, since any two filters
can be hooked together, provided they agree
on the data that is being transmitted
between them.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter
Advantages (Cont’d)

• Systems can be easily maintained and
enhanced, since new filters can be added to
existing systems and old filters can be
replaced by improved ones.

• They permit certain kinds of specialized
analysis, such as throughput and deadlock
analysis.

• The naturally support concurrent
execution.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter Disadvantages

• Not good choice for interactive systems,
because of their transformational character.

• Excessive parsing and unparsing leads to
loss of performance and increased
complexity in writing the filters
themselves.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Case Study:
Architecture of a Compiler

• The architecture of a system can change in
response to improvements in technology.

• This can be seen in the way we think about
compilers.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Early Compiler Architectures

• In the 1970s, compilation was regarded as a
sequential (batch sequential or pipeline)
process:

Lex Syn Sem Opt CGentext code

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Early Compiler Architectures

• Most compilers create a separate symbol
table during lexical analysis and used or
updated it during subsequent passes.

Symbol Table

Lex Syn Sem Opt CGentext code

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Modern Compiler Architectures
• Later, in the mid 1980s, increasing attention

turned to the intermediate representation of
the program during compilation.

Symbol Table

Lex Sem CGen
codetext

Attributed
Parse Tree

OptSyn

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Hybrid Compiler Architectures

• The new view accommodates various tools
(e.g., syntax-directed editors) that operate
on the internal representation rather than the
textual form of a program.

• Architectural shift to a repository style,
with elements of the pipeline style, since
the order of execution of the processes is
still predetermined.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Hybrid Compiler Architectures

Lex Syn Sem Opt Cgen

Edit Flow

Attributed
Parse Tree

Symbol Table

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object-Oriented Style

• Suitable for applications in which a central
issue is identifying and protecting related
bodies of information (data).

• Data representations and their associated
operations are encapsulated in an abstract
data type.

• Components: are objects.
• Connectors: are function and procedure

invocations (methods).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object-Oriented Style (Cont’d)

obj

obj

obj

obj

obj

obj
obj

obj

object

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object-Oriented Invariants

• Objects are responsible for preserving the
integrity (e.g., some invariant) of the data
representation.

• The data representation is hidden from
other objects.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object-Oriented Specializations

• Distributed Objects
• Objects with Multiple Interfaces

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object-Oriented Advantages

• Because an object hides its data
representation from its clients, it is possible
to change the implementation without
affecting those clients.

• Can design systems as collections of
autonomous interacting agents.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object-Oriented Disadvantages
• In order for one object to interact with

another object (via a method invocation) the
first object must know the identity of the
second object.
– Contrast with Pipe and Filter Style.
– When the identity of an object changes, it is

necessary to modify all objects that invoke it.
• Objects cause side effect problems:

– E.g., A and B both use object C, then B’s effects
on C look like unexpected side effects to A.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation Style

• Suitable for applications that involve
loosely-coupled collection of components,
each of which carries out some operation
and may in the process enable other
operations.

• Particularly useful for applications that must
be reconfigured “on the fly”:
– Changing a service provider.
– Enabling or disabling capabilities.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation Style (Cont’d)

• Instead of invoking a procedure directly ...
– A component can announce (or broadcast) one

or more events.
– Other components in the system can register an

interest in an event by associating a procedure
with the event.

– When an event is announced, the broadcasting
system (connector) itself invokes all of the
procedures that have been registered for the
event.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation Style (Cont’d)

• An event announcement “implicitly” causes
the invocation of procedures in other
modules.

procedure procedure procedure

Broadcasting System

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation Invariants
• Announcers of events do not know which

components will be affected by those
events.

• Components cannot make assumptions
about the order of processing.

• Components cannot make assumptions
about what processing will occur as a result
of their events (perhaps no component will
respond).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation
Specializations

• Often connectors in an implicit invocation
system include the traditional procedure
call in addition to the bindings between
event announcements and procedure calls.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation Examples

• Used in programming environments to
integrate tools:
– Debugger stops at a breakpoint and makes that

announcement.
– Editor responds to the announcement by

scrolling to the appropriate source line of the
program and highlighting that line.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation
Examples (Cont’d)

• Used to enforce integrity constraints in
database management systems (called
triggers).

• Used in user interfaces to separate the
presentation of data from the applications
that manage that data.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation Advantages

• Provides strong support for reuse since any
component can be introduced into a system
simply by registering it for the events of
that system.

• Eases system evolution since components
may be replaced by other components
without affecting the interfaces of other
components in the system.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Implicit Invocation
Disadvantages

• When a component announces an event:
– it has no idea what other components will

respond to it,
– it cannot rely on the order in which the

responses are invoked
– it cannot know when responses are finished

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style

• Suitable for applications that involve
distinct classes of services that can be
organized hierarchically.

• Each layer provides service to the layer
above it and serves as a client to the layer
below it.

• Only carefully selected procedures from the
inner layers are made available (exported)
to their adjacent outer layer.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style (Cont’d)

• Components: are typically collections of
procedures.

• Connectors: are typically procedure calls
under restricted visibility.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style (Cont’d)

procedure
calls

Basic Utilities

Core Layer

Useful System
sets of

procedures

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style Specializations

• Often exceptions are made to permit non-
adjacent layers to communicate directly.
– This is usually done for efficiency reasons.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style Examples

• Layered Communication Protocols:
– Each layer provides a substrate for

communication at some level of abstraction.
– Lower levels define lower levels of interaction,

the lowest level being hardware connections
(physical layer).

• Operating Systems
– Unix

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Unix Layered Architecture

System Call Interface to Kernel

Hardware

Socket

Protocols

Network
Interface

Plain
File

File
System

Block Device Driver

Cooked
Block

Interface

Raw
Block

Interface

Raw
TTY

Interface

Cooked
TTY

Line
Disc.

Character Device Driver

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style Advantages

• Design: based on increasing levels of
abstraction.

• Enhancement: Changes to the function of
one layer affects at most two other layers.

• Reuse: Different implementations (with
identical interfaces) of the same layer can
be used interchangeably.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style Disadvantages

• Not all systems are easily structured in a
layered fashion.

• Performance requirements may force the
coupling of high-level functions to their
lower-level implementations.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Interpreter Style

• Suitable for applications in which the most
appropriate language or machine for
executing the solution is not directly
available.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Interpreter Style (Cont’d)

• Components: include one state machine
for the execution engine and three
memories:
– current state of the execution engine
– program being interpreted
– current state of the program being interpreted

• Connectors:
– procedure calls
– direct memory accesses.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Interpreter Style (Cont’d)

Computation
State Machine

Current State
of

Program Being
Interpreted

Program
Being

Interpreted

Execution
Engine

Current
State of
Execution
Engine

inputs

outputs
selected

instruction

Selected
data (fetch)

Memory

store

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Interpreter Style Examples
• Programming Language Compilers:

– Java
– Smalltalk

• Rule Based Systems:
– Prolog
– Coral

• Scripting Languages:
– Awk
– Perl

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Interpreter Style Advantages

• Simulation of non-implemented hardware.
• Facilitates portability of application or

languages across a variety of platforms.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Java Architecture

Java
Source
Code

Java
Bytecode

Java
Compiler

Bytecode
Verifier

INTERNET

Class
Loader

Interpreter

Run-time
Environment

Hardware

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Interpreter Style Disadvantages

• Extra level of indirection slows down
execution.

• Java has an option to compile code.
– JIT (Just In Time) compiler.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Process-Control Style

• Suitable for applications whose purpose is
to maintain specified properties of the
outputs of the process at (sufficiently near)
given reference values.

• Components:
– Process Definition includes mechanisms for

manipulating some process variables.
– Control Algorithm for deciding how to

manipulate process variables.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Process-Control Style (Cont’d)
• Connectors: are the data flow relations for:

– Process Variables:
• Controlled variable whose value the system is

intended to control.
• Input variable that measures an input to the process.
• Manipulated variable whose value can be changed

by the controller.
– Set Point is the desired value for a controlled

variable.
– Sensors to obtain values of process variables

pertinent to control.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Feed-Back Control System

• The controlled variable is measured and the
result is used to manipulate one or more of
the process variables.

Process
Controller

set point

controlled
variable

input variables

changes to
manipulated
variables

sensor for
controlled variable

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Open-Loop Control System

• Information about process variables is not
used to adjust the system.

set point Controller
Process

input
variables

changes to
manipulated
variables

controlled
variable

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Process Control Examples
• Real-Time System Software to Control:

– Automobile Anti-Lock Brakes
– Nuclear Power Plants
– Automobile Cruise-Control

desired
speed

pulses from wheel

Controller

active/inactive
variables Engine
throttle
setting

wheel
rotation

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Client-Server Style
• Suitable for applications that involve

distributed data and processing across a
range of components.

• Components:
– Servers: Stand-alone components that provide

specific services such as printing, data
management, etc.

– Clients: Components that call on the services
provided by servers.

• Connector: The network, which allows
clients to access remote servers.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Client-Server Style

Client 1 Client 2 Client N...

File Server Database Server Object Server

Network

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Client-Server Style Examples

• File Servers:
– Primitive form of data service.
– Useful for sharing files across a network.
– The client passes requests for files over the

network to the file server.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Client-Server Style
Examples (Cont’d)

• Database Servers:
– More efficient use of distributing power than

file servers.
– Client passes SQL requests as messages to the

DB server; results are returned over the
network to the client.

– Query processing done by the server.
– No need for large data transfers.
– Transaction DB servers also available.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Client-Server Style
Examples (Cont’d)

• Object Servers:
– Objects work together across machine and

network boundaries.
– ORBs allow objects to communicate with each

other across the network.
– IDLs define interfaces of objects that

communicate via the ORB.
– ORBs are the evolution of the RPC.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

RPCs Versus ORBs

Object Request Broker

call foocall foo

Client
Code Data

Server

RPC Mechanism

1) Remote Procedure Call (RPC)

execute foo

Client Server
Object X Object Y

call foo
on

Object Y

call foo
on

Object X Code
Data

Code
Data

2) Object Request Broker

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Client-Server Advantages

• Straightforward distribution of data.
• Transparency of location.
• Mix and match heterogeneous platforms,
• Easy to add new servers or upgrade existing

servers.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Client-Server Disadvantages

• Performance of the system depends on the
performance of the network.

• Tricky to design and implement C/S
systems.

• Unless there is a central register of names
and services, it may be hard to find out what
services are available.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Technologies for Distributed
Architectures

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

IBM’s MQSeries

• MQSeries provides application-
programming services that enable programs
to communicate with each other in a
distributed fashion using messages and
queues.

• This kind of communication is called
asynchronous messaging.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

IBM’s MQSeries (Cont’d)

• The MQSeries software enables
applications to exchange information across
more than 25 different operating system
platforms.

• This flexibility allows MQSeries
applications to run on hardware ranging
from modest desktops to high-end
mainframe computers.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

MQSeries Components

• Queue Managers manage one or more
queues and ensure that messages are put on
the correct queue or that they are routed to
another (remote) queue manager.

• Applications must make a successful
connection to a queue manager before they
can put or get messages to or from a queue.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

MQSeries Applications

• An application can only connect to one
queue manager at a time.

• Before an application can use a queue, it
must open a queue for putting, getting, or
both putting and getting messages.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

MQSeries Queued Messages

• A queued message consists of two parts:
– The first part includes application-specific data

contained in a buffer.
– The second part includes control information,

such as a message type, destination, and various
other options.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programs Communicating via a
Queue on the Same Workstation

Queue Manager

Queue
A B

put get

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programs Communicating via a
Queue on the Same Workstation

• Figure illustrates two programs A and B
that are communicating through a managed
message queue.

• In this example, A, B, and the queue
manager are all executing on the same
workstation.

• The communication between the programs
is conducted through a queue onto which
program A puts messages and from which
program B gets messages.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programs Communicating via a
Queue on Different Workstations

A
put

Queue Manager

Transmission Queue

Queue Manager

Queue

get
B

Channel

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programs Communicating via a
Queue on Different Workstations
• Figure illustrates two programs A and B

that are communicating through a managed
message queue.

• A,B are executing on different workstations.
• Program A puts a message onto the queue,

specifying not a local queue but a local
definition of a remote queue.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programs Communicating via a
Queue on Different Workstations
• The local queue definition identifies a non-

local queue that is managed by another
queue manager.

• The queue manager, to which program A is
connected to, puts the message on a special
queue called a transmission queue.

• The message is then automatically sent
along a defined channel that connects the
two queue managers.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programs Communicating via a
Queue on Different Workstations
• If for some reason the channel is not active

(possibly due to a network failure) the
message remains on the transmission queue.

• The message will be sent automatically
when the channel is available again.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Programs Communicating via a
Queue on Different Workstations
• The destination queue manager puts the

message on the queue that is specified by
program A.

• Once a message is placed on the destination
queue, the queue manager can invoke
program B automatically and B can then get
the queued message.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Using MQSeries to Create a Server
that Handles a Single Service S1

S1

Client
Request Queue

Manager
(QM)

R

Q
Trigger

Data
(Response)

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Scaling-Up to Multiple Queues
and Services

Q1

Trigger

S2
Queue

Manager
(QM)

Data
(Response)

Client
Requests

Q2

R

S1

Trigger

S3

Q3

Data
(Response)

Trigger

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

OMG’s CORBA

• The Common Object Request Broker
Architecture (CORBA) is a standard
distributed object architecture developed by
the Object Management Group (OMG)
consortium.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA Objects

• CORBA objects can:
– be located anywhere on the network,
– interoperate with objects on other platforms,
– be written in a variety of programming

languages:
• Java
• C++
• C
• Smalltalk
• COBOL
• Ada.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA Messages

• Distributed objects in a CORBA system
communicate by sending messages to each
other.

• These messages, however, are not queued,
as is the case with MQSeries.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA Method Request

Stubs

Client

ORB

Object Reference

Server

Skeletons

ORB

Servant

Network Message
(TCP/IP, SPX/ISX, ...)

Method Requests

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA Method Request (Cont’d)

• The Figure shows how a message from a
client object is sent to a server object.

• In order for a client to access a remote
server object, it must first obtain a handle
(object reference) to that object.

• If the server object is remote, the handle
points to a stub function, which uses the
Object Request Broker (ORB) service to
forward invocations to the server object.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA Stubs
• After the stub establishes a connection to

the server, it sends the following to the
destination object:
– an object reference,
– an encoded representation of the method,
– parameters to the skeleton code linked.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA Skeletons

• The skeleton code transforms the call and
parameters into the required
implementation-specific format before
calling the object.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA Platform Independence

• The client is unaware of the CORBA
object’s location, implementation details,
and which ORB is used to access the object.

• The connections between distributed objects
are managed through a name server.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

CORBA IDL and IIOP

• The client may only invoke methods that
are specified in the CORBA object’s
interface.

• Object interfaces are defined using OMG’s
Interface Definition Language (IDL).

• Different ORBs communicate via the
Internet InterORB Protocol (IIOP).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Server Objects in CORBA

• The server side ORB receives the request
over a network connection and then
determines which of the objects on its
machine is the target.

• When the ORB locates the object, it must
prepare it to receive the request. E.g.,
– Start a server process that contains the object.
– Retrieve the object from persistent storage.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Hiding Services Behind an
Object Adapter

S1 S2 S3 S4

Adapter
(CORBA OBJECT)

ORB

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object Adapters in CORBA

• The Figure shows how an adapter can act as
a proxy between a set of services and the
ORB.

• Clients will access each service through the
adapter that is responsible for that service.

• The adapter will be responsible for finding
the appropriate filters to handle each client
request.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object Adapters in CORBA (Cont’d)
• These filters may be:

– on the same machine as the adapter,
– or may be on another machine, in which case

the adapter must delegate the client request to
another adapter.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

References
• [Bass et al 98] Bass, L., Clements, P., Kazman R., Software Architecture in

Practice. SEI Series in Software Engineering, Addison-Wesley, 1998
• [CORBA98] CORBA. 1998. OMG’s CORBA Web Page. In:

http://www.corba.org
• [Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Inc., Reading, Massachusetts.

• [IBM98] MQSeries Whitepaper. In:
http://www.software.ibm.com/ts/mqseries/library/whitepapers/mqover

• [JavaIDL98] Lewis, G., Barber, S., Seigel, E. 1998. Programming with Java
IDL: Developing Web Applications with Java and CORBA. Wiley Computer
Publishing, New York.

• [CORBA96] Seigel, J. 1996. CORBA Fundamentals and Programming.
John Wiley and Sons Publishing, New York.

• [Shaw96] Shaw, M., Garlan, D. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall.

