Linux as a Case Study: Its Extracted Software Architecture

Ivan T. Bowman and Richard C. Holt
Dept. of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA
+1 (519) 888-4567 x4671
{itbowman,holt}@plg.uwaterloo.ca

ABSTRACT

Many software systems do not have a documented sys-
tem architecture. These are often large, complex sys-
tems that are difficult to understand and maintain. One
approach to recovering the understanding of a system is
to extract architectural documentation from the system
implementation. To evaluate the effectiveness of this ap-
proach, we extracted architectural documentation from
the Linux™ kernel. The Linux kernel is a good candi-
date for a case study because it is a large (800 KLOC)
system that is in widespread use and it is representative
of many existing systems. Our study resulted in doc-
umentation that is useful for understanding the Linux
system structure. Also, we learned several useful lessons
about extracting a system’s architecture.

Keywords
Software architecture, architecture recovery, redocu-
mentation

1 INTRODUCTION

Recent research [12, 15] suggests that large software sys-
tems should be designed with a documented software
architecture. This architecture provides a building plan
for a system at a high level of abstraction. Individual
functions and even modules are not described in de-
tail; instead, subsystems and relations between them
are documented. This level of abstraction is appropri-
ate for understanding an entire software system, and
provides a good mechanism for system understanding.

We now know that using a documented software ar-
chitecture throughout the lifetime of a software system
can improve the quality and maintainability of the sys-
tem. However, many existing systems do not have a
documented system architecture. These systems are too
valuable to discard or re-develop, but are often plagued
by high maintenance costs, poor performance, or secu-

Neil V. Brewster

Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario M5S 1A4
CANADA
+1 (416) 978-5036
brewste@cs.toronto.edu

rity risks. There is an approach that appears to be
a promising way to get the benefits of a documented
software architecture for these legacy systems: we can
use automated tools to help extract architectural doc-
umentation from a system implementation. This ap-
proach has been used successfully by several researchers
[3, 6, 10, 18, 20] to extract an architectural description
from complex software systems.

Architectural redocumentation restores system under-
standing by abstracting important entities and their re-
lationships in a large software system. This enhanced
understanding can be used as part of a re-engineering
effort, as a way to reduce maintenance costs, or as an
input to a system evaluation. Unless architectural doc-
umentation is maintained, it will become obsolete as
the system undergoes further changes. Finnigan et al.
[3, 19] propose a way to keep architectural documenta-
tion up to date. First, automated tools are combined
with human effort to extract system documentation and
store it in a Software Bookshelf. As the system changes
after the documentation extraction, a librarian uses au-
tomated tools to compare the system’s implementation
with the documentation. The librarian updates the doc-
umentation to reflect system changes (or perhaps pre-
vents system changes that cause architectural erosion as
described by Perry and Wolf [12]).

Linux™ is a UnixTM-like operating system that has

received much popular attention [8]. Linux is based
on the Open Source™ concept [13], which means that
there are no barriers to discussing the details of the sys-
tem implementation. Linux has an interesting software
structure that is similar to other large software systems.
Linux is also a system that is growing rapidly; the source
code for the Linux system has approximately doubled
every year from 10 KLOC in 1991 to 1.5 MLOC in 1998

[9]-

Because Linux is an interesting representative of exist-
ing software systems, we chose to examine it as a case
study. In particular, we studied the Linux kernel, which
is responsible for process, memory, and hardware device
management. The Linux kernel is itself a large system
(approximately 800 KLOC). Although there is some ex-

isting documentation about the Linux kernel [7, 14], this
documentation describes individual subsystems and al-
gorithms. There is no architectural documentation that
describes the system structure at a high level of abstrac-
tion.

The Linux kernel is a good guinea pig for architectural
recovery. It is a large system in widespread use, and it
is an interesting representative of real software systems.
Because Linux is freely available, there are no barriers
to discussing its architectural structure in detail. To
promote further use of the Linux kernel as a case study,
we are making the architectural relations and system
architecture that we extracted from the system imple-
mentation available to other researchers [11].

Case Study Approach

Two types of architectural documentation are particu-
larly beneficial to humans trying to understand a soft-
ware system: a conceptual architecture and a concrete
architecture. The conceptual architecture shows how
developers think about a system; it shows relationships
between subsystems that are ‘meaningful’ to develop-
ers. For example, a subsystem might depend on another
only for debugging purposes, but this dependency might
not be shown in a conceptual architecture of the sys-
tem. In contrast, the concrete architecture of a system
shows the relationships that exist in the implemented
system. While the conceptual architecture is easier to
understand because it contains only essential relations,
the concrete architecture is necessary when making de-
cisions requiring implementation-specific knowledge.

Linux has neither a documented conceptual nor a doc-
umented concrete architecture. There is existing doc-
umentation that describes the kernel, but it describes
individual subsystems in detail instead of concisely de-
scribing the relations between subsystems. As a first
step in our recovery effort, we examined the existing
documentation to determine the conceptual architec-
ture of the Linux system. This conceptual architecture
helped when examining the system implementation to
form the concrete architecture—it allowed us to concen-
trate on important relationships, and provided an initial
system structure.

Our approach to extracting the concrete architecture of
the Linux kernel was as follows:

¢ Examine existing documentation to form a concep-
tual architecture of the Linux kernel.

e Group source files into subsystems based on direc-
tory structure, naming conventions, source code
comments, and examination of the source code.
Use the conceptual architecture as a guide in to
what subsystems should be created and where files
should be clustered.

e Extract relations between source files in the Linux

implementation.
o Use the relations between source files and clustering
of files to determine relations between subsystems.
e Use the clustering and relationships to form a con-
crete architecture of the Linux system.

Paper Organization

The rest of this paper is organized as follows. Sec-
tion 2 describes the conceptual architecture of Linux.
Section 3 describes the process we used to extract the
Linux concrete architecture. Section 4 describes the
concrete architecture. Section 5 draws conclusions from
this work.

2 CONCEPTUAL ARCHITECTURE

We began our study of the Linux kernel by forming its
conceptual architecture. This conceptual architecture
acts as a framework which we use while examining the
system implementation. The conceptual architecture
helps us understand the volume of detail in the imple-
mentation by providing a suggested system structure.

We used descriptions [16, 17] of related operating sys-
tems (Unix and Minix) and existing Linux documenta-
tion to create an architectural description of the struc-
ture we expected to find in the Linux system. After
reviewing existing documentation [7, 14], we arrived at
the conceptual architecture, shown at its highest level
of abstraction in Figure 1.

File System

Memory Network
Manager Interface
Process Inter-Process

Scheduler [™—___—"| Communication

“

Initialization Library

Figure 1: Linux Conceptual Architecture

Legend: depends on———m

The seven major subsystems are the following;:

1. The Process Scheduler is responsible for support-
ing multitasking by changing which user process
executes.

2. The Memory Manager subsystem provides a sepa-
rate memory space for each user process, and uses
swapping to support more processes than fit in
physical memory.

3. The File System provides access to hardware de-
vices. User processes can access keyboards, tape
drives, hard drives, and modems using one inter-
face that is implemented by the File System.

4. The Network Interface encapsulates access to net-
work devices in a similar manner to the File Sys-
tem. User processes can communicate with other
computers using several different types of network
hardware and transmission protocols.

5. The Inter-Process Communication (IPC) subsys-
tem allows user processes to communicate with
other processes on the same computer. Synchro-
nization, memory sharing, and inter-process mes-
saging primitives are supported by the IPC subsys-
tem.

6. The Initialization subsystem is responsible for ini-
tializing the rest of the Linux kernel with appropri-
ate user configured settings.

7. The Library subsystem contains routines which are
used throughout the kernel.

Each of the seven kernel subsystems has additional sub-
subsystems hierarchically nested within it. The rela-
tionships shown in Figure 1 are ‘depends-on’ relation-
ships. For example, the Memory Manager subsystem
depends on the File System to swap memory to and
from disk. For clarity, the relations from the Initializa-
tion subsystem and to the Library subsystem are omit-
ted. The Initialization subsystem depends on all other
kernel subsystems since it calls initialization routines
throughout the kernel, and all of the kernel subsystems
depend on the Library subsystem.

File System Conceptual Architecture

The Linux kernel is a large system that has a complex
system structure. Its subsystems have sub-architectures
of considerable size and complexity. Due to size limita-
tions, we will focus on only one of these in this paper,
the File System. Details of the other kernel subsystems
are available in previous papers [1, 2].

There are three main roles that the File System per-
forms:

1. It provides access to a wide variety of hardware
devices.

2. It supports several different logical file system for-
mats that control how files are mapped to physical
locations on hardware devices.

3. It allows programs to be stored in several exe-
cutable file formats, including interpreted scripts.

Figure 2 shows the conceptual architecture of the Linux
File System. In this figure, double-headed arrows in-
dicate dependence on or from all of the File System
subsystems. This indicates that all of the File System
subsystems depend on the Library subsystem, and the

Memory Network
IPC
Manager Interface
File System System Call
/ Interface \‘
Executable | Virtual File
File Formats " System
Device Logical File
Drivers | Systems
Buffer Cache
t !
Process / Initialization Librar
Scheduler y
——depends on—»
Legend: Kernel Subsystem
Subsystem ——depends on all —»»

Figure 2: File System Conceptual Architecture

Initialization subsystem depends on all of the File Sys-
tem subsystems since it calls functions to initialize them.

Linux uses the facade design pattern [4] to allow user
processes and other parts of the kernel to use elements
of the File System through a single interface. The facade
design pattern uses a single subsystem which provides a
single, simple facade interface to the subsystems within
a system. Since clients only depend on the facade inter-
face, the subsystems that implement system function-
ality can change their implementation without affect-
ing clients. This design pattern allows clients to take
advantage of a wide variety of hardware devices, logi-
cal file system formats, and executable formats without
depending directly on any of the subsystems that im-
plement specific functionality. Since user processes and
other parts of the kernel depend only on the System
Call Interface, subsystem interdependency is reduced
substantially. The architecture of the Linux File Sys-
tem follows the ‘object-oriented’ or ‘data abstraction’
architectural style described by Shaw and Garlan [15].
The subsystems of the File System act to encapsulate
state and functionality related to hardware devices or
logical file systems. These subsystems interact through
method calls.

The main roles of the File System are implemented in
five subsystems.

1. The Device Drivers subsystem performs all com-
munication with hardware devices supported by
Linux.

2. The Logical File Systems implements several log-
ical file systems that can be placed on hardware
devices; these different file systems allow interop-

erability with different operating systems, and also
allow specialized functionality such as encryption,
compression, and high performance.

3. The FEzecutable File Formats subsystem allows
clients to execute programs from several different
executable file formats, including not only compiled
programs, but also interpreted scripts.

4. The File Quota subsystem allows system admin-
istrators to limit the amount of file storage that
individual users may use.

5. The Buffer Cache subsystem provides memory
buffers for input/output operations, and reduces
hardware accesses by caching data and eliminating
redundant reads and writes.

There are two other subsystems in the File System: the
System Call Interface and Virtual File System subsys-
tems. These two subsystems are facade interfaces. The
Virtual File System combines functionality from the
Logical File Systems and Device Drivers into a single
interface. Other kernel subsystems can use the Virtual
File System and treat all hardware devices as files, with-
out depending on any particular hardware device driver
or logical file system. The System Call Interface subsys-
tem presents a similar unified interface. User processes
can use the System Call Interface to access any func-
tionality in the File System, without depending on the
implementation of subsystems within the File System.

The dependency relations shown in Figure 2 are based
on existing system documentation. Some of the de-
pendencies that are perhaps unexpected are the follow-

ing:

e The Device Driver subsystem depends on the Pro-
cess Scheduler. While a hardware request is being
completed, the associated device driver informs the
Process Scheduler that the requesting user process
should be suspended so that another process can
execute.

e The Logical File System subsystem depends on the
Network Interface subsystem. Three of the logical
file system implementations represent files that are
stored on another computer and accessed using the
network. These three logical file systems depend
on the Network Interface to communicate with the
remote computer.

e The Memory Manager subsystem depends on the
Virtual File System subsystem to swap memory to
and from secondary storage.

In our conceptual architecture, no kernel subsystem de-
pends on any particular File System Format subsystem,
Device Driver subsystem, or Executable File Format
subsystem. The Memory Manager subsystem is the only
subsystem to depend on the File System, and it does so

through the Virtual File System subsystem facade. Be-
cause of the facade design pattern, the Linux File Sys-
tem architecture is very flexible. It appears it would be
easily maintainable because there are few dependencies.

The documentation we reviewed provided us with a con-
ceptual architecture that indicates the Linux system
is implemented according to strong implementation-
hiding principles, and that the system should be easily
understandable and maintainable. To find out whether
the implementation matches this architecture, we need
to extract a concrete architecture from the system im-
plementation.

3 EXTRACTION METHODOLOGY

To determine what relations exist in the system imple-
mentation, we need to look at the definitive artifact—
the system source code. The size of the Linux kernel
implementation (800 KLOC) makes it too costly to ex-
amine the source manually. Instead, we used automated
tools to extract relations from the source code then com-
bined these relations into a concrete system architec-
ture.

Source Code
Symbols Used / Defined

by Source Files
Hierarchical
Subsystem
Composition

/: '3 Subsystem Uses

creates
N ‘/ Subystem

v

)

Figure 3: Extraction Process

Figure 3 shows an overview of the process we used to
extract a concrete system architecture from the Linux
kernel. We began by determining which source files were
part of the kernel. Next, we used a source-code extrac-
tor called cfx [11]. This tool extracts relations such as
‘function z calls function 4’ and ‘source file x.c defines
function z’. The tools extracts function call and vari-
able access relations; these imply control flow and data
flow dependencies.

The output of cfx is a set of relations between func-
tions and variables. These relations are too detailed for
human consumption. We used the grok [5, 11] tool to
determine relations between source files based on the

relations between the functions and variables defined
within the source files. With 1682 source files in the ker-
nel implementation, even relations between source files
are at too low a level for easy system understanding. In-
stead of relations between source files, we would like to
examine relations between subsystems. To achieve this
result, we manually created a tree structured decompo-
sition of the Linux system into subsystems. Each source
file was manually assigned to a single subsystem, and
each subsystem was assigned to a single containing sub-
system. We used the subsystems from our conceptual
architecture as an initial set of subsystems, and assigned
source files to subsystems based on several criteria: di-
rectory structure, file naming conventions, source code
comments, documentation, or, as a last resort, exami-
nation of the source code. If a set of source files seemed
logically related, we created a new subsystem to contain
them.

After we manually created a hierarchical description of
the subsystems and source files in the Linux kernel, we
used the grok tool to determine what relations exist be-
tween subsystems, based on the relations between the
source files that are contained in the subsystems. The
output of the grok tool is at the appropriate level of
abstraction (inter-subsystem), but it is still difficult to
understand directly. We used a visualisation tool called
lsedit [5, 11] to visualise the extracted system struc-
ture. After viewing the extracted structure, we refined
the hierarchical decomposition of the system by moving
some source files to more appropriate subsystems.

Our extraction process combined tool support and hu-
man interpretation to extract the concrete architecture
of the Linux kernel.

Hierarchical Decomposition

Before viewing the concrete architecture of the Linux
kernel, we manually created a hierarchical decomposi-
tion of the system structure, assigning source files to
subsystems, and subsystems hierarchically to subsys-
tems. Figure 4 shows part of this hierarchical decom-
position (some subsystems are omitted for brevity).

The seven major subsystems from Figure 1 are shown
in the second and third rows of Figure 4. These subsys-
tems also have corresponding directories in the source
code implementation, which allowed us to quickly as-
sign files within these directories to one of the major
subsystems. Two of these major subsystems (the File
System and Network Interface subsystems) had further
subdirectories. Where possible, we used the directory
structure to assign source files to appropriate subsys-
tems. Where directory structure was not sufficient, we
used file naming conventions and examination of the
source code to place source files in subsystems. After
applying these rules, we arrived at a tree-structured de-

Linux

[\ \ |
Memory Process Network IpC
Manager Scheduler Interface

- File]
Initialization System Library
[\ \ |
Executable Virtual File File Buffer
Formats System Quota Cache
[|
Device Logical File
Drivers Systems

Y1 ¥re

Legend: ‘
Subsystem | ‘ /¢\
contained subsystems omitted subsystems

Figure 4: Partial Subsystem Hierarchy

composition of the Linux kernel such that each source
file was placed in a single subsystem.

We used this hierarchical decomposition to view rela-
tions between subsystems instead of relations between
source files. This level of abstraction made it possible
for us to consider the structure of the entire Linux sys-
tem.

4 CONCRETE ARCHITECTURE

A combination of automated extraction tools and hu-
man interpretation allowed us to determine the struc-
ture of the Linux kernel implementation. Figure 5 shows
the relations that we found at the highest level of ab-
straction.

File System

Network
Interface

k

Process Inter-Process
Scheduler Communication

Memory
Manager

Initialization Library

Legend: ——extracted dependency —»

Figure 5: Linux Concrete Architecture

The concrete architecture in Figure 5 has the same
subsystems as the conceptual architecture in Figure 1.
However, the dependency relations appear to be quite
different from the conceptual architecture. The con-
ceptual architecture has relatively few dependencies be-
tween top-level systems with only 19 inter-subsystem
dependencies. In contrast, the concrete architecture
that we extracted is almost fully connected, with 37
inter-subsystem dependencies out of a possible 42.

When we examined these unexpected dependency rela-
tions, we learned that they appeared for several reasons.
In some cases, Linux developers avoided existing inter-
faces for better efficiency; in other cases, it appeared
that the dependencies appeared only for expediency.
Whether or not these dependencies are required or de-
sirable, we learned that a concrete implementation is
likely to have more dependencies than a conceptual ar-
chitecture indicates.

File System Concrete Architecture

To further compare the conceptual and concrete archi-
tectures of the Linux system, we examined the File Sys-
tem. Figure 6 shows the concrete architecture that we
extracted from the File System subsystem.

The differences that we noted at the highest level of ab-
straction were also present within the File System. The
concrete architecture of the File System has the same
subsystems as the conceptual architecture, but there are
substantially more dependency relations.

We studied the dependencies that appear in the con-
crete architecture but not in the conceptual architec-
ture. Some we found to be quite surprising: the Network
Interface subsystem depends on the Logical File System
implementation directly, which we did not predict in
the conceptual architecture. We found that two file sys-
tems (NCPFS and SMBFS) that use the network were
implemented by having the Network Interface directly
call functions in the implementation of these logical file
systems. This is substantially different from our con-
ceptual architecture, which predicted that the Network
Interface would not depend on the File System at all,
since network-oriented file systems would call the Net-
work Interface to implement their functionality. From
this dependency, we learned that unexpected dependen-
cies can occur if control flow is implemented differently
than expected.

Another dependency that we did not expect is the
dependency of the Process Scheduler on the Device
Driver subsystem. The Process Scheduler has a routine
(printk) to print messages to the console. The printk
routine calls a routine which is implemented within the
Device Drivers subsystem of the File System. This de-
pendency wasn’t part of our conceptual architecture.

We found that all of the File System subsystems de-
pended on the Inter-Process Communication (IPC) sub-
system, contrary to the conceptual architecture predic-
tion that none of these subsystems would depend on the
IPC subsystem. Upon examination, we found that the
IPC subsystem implements synchronization primitives
that are used not only by user processes, but also by
the rest of the kernel.

In addition to the above unexpected dependencies, we
found that several dependencies could not be explained
by an examination of the source and system documen-
tation. It appears that these dependencies are due to
developers avoiding existing interfaces for expediency.

Overall, the concrete structure of the File System is
similar to the conceptual architecture that we formed
based on available documentation and related systems.
However, we found that there were substantially more
dependency relations, caused by missed dependencies in
the documentation, functionality that was implemented
in multiple subsystems, and unexpected control flow im-
plementations. Although there are substantially more
dependencies in the concrete architecture of the File
System than the conceptual architecture, the system is
still far from fully connected. It appears that it is not
as easy to maintain and update the File System as the
conceptual architecture indicates, but the File System
still appears flexible and open to change.

Logical File System Concrete Architecture

To further explore the concrete architecture of the Linux
kernel, we examined the Logical File Systems concrete
architecture. The Logical File Systems subsystem con-
tains seventeen different logical file systems. These file
systems are responsible for mapping logical files (which
are presented to user processes through the System Call
Interface) to physical locations on storage devices. Fig-
ure 7 shows the concrete architecture of the Logical File
Systems subsystem.

In the conceptual architecture in Figure 2, we predicted
that there would be a separation between the interface
to logical file systems and their implementations. We
expected that other kernel subsystems would not de-
pend directly on any implementation of a logical file
system, instead depending only on the Virtual File Sys-
tem subsystem. This separation follows the facade de-
sign pattern [4]. When we extracted relations from the
system implementation, we found that the situation was
not so simple.

One set of dependencies that we did not expect are due
to the PROC file system. This file system is a spe-
cial file system that reports status information about
the kernel, and allows access to the status and mem-
ory of executing processes. To accomplish this report-
ing, the PROC file system relies on other kernel subsys-

Memory NetWOI’k
Manager W Interface
File System /
System Call
y/ Interface 4\
Executable .| Virtual File
File Formats System
\ Logical File
Device ‘/) Systems
/—> Drivers \ /
Buffer Cache |- \ » File Quota
A
‘K) \—/w Process Inter-Process
Init Scheduler Communication
Kernel
: depends on—— depends on all —————»»
L egend: Subsystem Subsystem p p

Figure 6: File System Concrete Architecture

tems to perform reporting about their status. Because
the reporting functionality is implemented throughout
the kernel, the Process Scheduler and Network Interface
subsystems depend on the PROC file system.

Another dependency that we did not expect is the de-
pendency of the ISO subsystem on the CD-ROM device
driver. We had expected that logical file systems would
not depend on any particular device driver implemen-
tation, instead depending only on the Facade Interface
of the Device Driver subsystem. We found that the
IS09660 logical file system is only used on CD-ROM
devices, and there are data types that are defined by
the CD-ROM device driver and used by the ISO9660
file system.

We did find that the different Logical File Systems
are relatively independent of each other. The excep-
tions are those systems that reuse code: the SMBFS,
NCPFS, FAT, VFAT, UMSDOS, and MSDOS subsys-
tems implement access to various MS-DOS™ related
file systems. Because these subsystems share function-
ality, they reuse code. This reuse leads to dependencies
between the subsystems. The implementation of the
EXT2, XTA, SYSV, EXT, and MINIX file systems is
based on similar reuse, again leading to unexpected de-
pendencies.

The Logical File Systems subsystem of the Linux File
System has more dependencies than we had predicted in
our conceptual architecture. In addition, different Logi-
cal File Systems are not isolated from each other to the
extent that we had expected based on system documen-
tation. However, the facade design pattern is apparent

in the extracted system structure, and it appears to be
relatively easy to add more logical file systems or update
existing ones.

5 CONCLUSIONS

In our study, we used existing documentation and
knowledge of related systems to form the conceptual
architecture of the Linux system. Next, we used au-
tomated tools and human interpretation to extract the
concrete architecture of the Linux kernel.

The conceptual architecture of the Linux kernel contains
abstractions (such as the facade design pattern) which
appear to limit inter-system dependencies and promote
maintainability and extendibility. Although we were
able to find these abstractions in the concrete architec-
ture, we found that there were unexpected dependencies
at all levels of abstraction. These extra dependencies act
to reduce the maintainability of the Linux kernel. As
the system grows, it is possible that these dependencies
will need to be eliminated.

Lessons Learned

Our extraction effort showed us that automated tools
are very helpful in extracting the architecture from a
system’s implementation. Our tools automatically ex-
tracted facts, and showed us relations at any level of
abstraction that we wanted. However, we still needed
a human’s judgement to determine an appropriate hi-
erarchical decomposition of the system structure based
on idiosyncratic details such as directory structure, file
naming conventions, and examination of source code.

We found that the concrete architecture of the Linux

Device Drivers

‘ Virtual File System ‘
; Facade CD-ROM

4 Interface Driver

& f
y)

Logical File Systems

‘minix H xia H Sysv H ext ‘

‘ ufs HumsdosH fat H vfat ‘

ofs | [smbfs || ncpts | [proc |
A
P :

msdos iso

Memory Network 1PC Process
Manager Interface Scheduler
. K | ——depends on all —»»
Legend: erne subsystem
Subsystem ——depends on—»

Figure 7: Logical File System Concrete Architecture

kernel has substantially more dependencies than the
conceptual architecture. In fact, the Linux kernel is
almost completely connected at the highest level of ab-
straction. We found the following reasons for additional
dependencies:

e The conceptual architecture missed the use of some
subsystems; for example, the IPC subsystem im-
plements synchronization primitives that are used
throughout the kernel, but the conceptual architec-
ture shows the IPC subsystem used only by user
processes.

e Some functionality that the conceptual architec-
ture showed in a single subsystem was implemented
in several subsystems, leading to additional depen-
dencies. For example, the PROC file system is im-
plemented throughout the kernel.

e The conceptual architecture might show control
flow in one manner, but the implementation might
use a different mechanism. For example, the
conceptual architecture showed that the network-
oriented file systems depended on the Network In-
terface. In the concrete architecture, we found that
the Network Interface directly calls two of these log-
ical file systems.

e In some cases, Linux developers improved system
efficiency by bypassing existing interfaces.

In addition to the above reasons for additional depen-
dencies, it seems that some of these dependencies exist

for developer expediency. One comment in a header file
states “The read-only stuff doesn’t really belong here,
but any other place is probably as bad and I don’t want
to create yet another include file.”

The Linux system could be restructured to remove some
unexpected dependencies. One thing that seems to have
affected the use of implementation details is the organi-
zation of the source code: most of the header files that
define system details are located in a single directory.
Thus it is difficult to determine which header files define
interfaces that should be used throughout the kernel,
and which header files define interfaces for use within
a single subsystem. In some cases, the placement of
the header files is required by the implementation tech-
nique: the super-block of the virtual file system contains
a union of information for each of the different logical
file systems. This means that the file system (and any
module that uses it) needs to have knowledge about the
details of the implementation of each of the logical file
systems.

After reviewing the concrete structure of the Linux ker-
nel, it would be possible to update the conceptual ar-
chitecture. Some dependencies in the conceptual archi-
tecture that we formed based on documentation were
missed by simple omission—we did not see mention of
the dependencies in the documentation, nor do they
appear in related systems. The concrete architecture
should be used to refine the conceptual architecture,
but it is not desirable to add all relations from the con-
crete architecture since many of these relations are not
essential, and hinder system understanding because of
the additional complexity. For example, the dependence
of the Process Scheduler on the Device Drivers subsys-
tem of the File System through the single call in the
implementation of printk could be omitted from the
conceptual architecture. The development of the con-
ceptual and concrete architectures seems to be best ac-
complished with an iterative process.

Although the structure of the Linux system is desirable
in many cases because of efficiency or other considera-
tions, it is likely that many unnecessary dependencies
could be eliminated if the system was restructured to
avoid using implementation details directly. It may not
be reasonable to do this with Linux at this point, but
perhaps when new systems are implemented, automated
tools such as those used in this case study can detect
and prevent these spurious relations.

ACKNOWLEDGEMENTS

The authors would like to thank Gary Farmaner for his
support with the extraction tools. We would also like
to thank Meyer Tanuan and Saheem Siddiqi for their
help in extracting an earlier version of the architecture.
Susan Sim provided valuable feedback on an earlier draft

of this paper. The contribution of the Linux developer
community is gratefully acknowledged.

REFERENCES

[1] Ivan Bowman. Conceptual architecture of the linux
kernel. Available at http://plg.uwaterloo.ca/
“itbowman/CS746G/al/, 1998.

[2] Ivan Bowman, Saheem Siddigi, and Meyer Tan-
uan. Concrete architecture of the linux ker-
nel. Available at http://plg.uwaterloo.ca/
“itbowman/CS746G/a2/, 1998.

[3] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr,
K. Kontogiannis, H. A. Miiller, J. Mylopoulos,
S. G. Perelgut, M. Stanley, and K. Wong. The soft-
ware bookshelf. IBM Systems Journal, 36(4):564—
593, October 1997.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison-Wesley,
1994.

[5] R.C. Holt. Structural manipulation of software
architecture using tarski relational algebra. In
Eighth Working Conference on Reverse Engineer-
ing (WCRE’98), October 1998. To appear.

[6] Rick Kazman and Jeromy Carriere. View extrac-
tion and view fusion in architectural understand-
ing. In 5th International Conference on Software
Reuse, Victoria, BC, Canada, June 1998.

[7] The linux kernel hacker’s guide. Available at
http://www.redhat.com:8080/HyperNews/get/
khg.html.

[8] Josh McHugh. Freeware children. Forbes Magazine,
August 1998.

[9] Josh McHugh. Linux: The making of a global hack.
Forbes Magazine, August 1998.

[10] Gail C. Murphy, David Notkin, and Kevin Sullivan.
Software reflexion models: Bridging the gap be-
tween source and high-level models. In Proceedings
of the Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 18—28,
Washington, DC, October 1995. IEEE Computer
Society Press.

[11] PBS tools. Available at http://www.turing.
cs.toronto.edu/pbs.

[12] Dewayne E. Perry and Alexander L. Wolf. Founda-
tions for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40—
52, October 1992.

[13] Eric S. Raymond. The cathedral and the bazaar.
Available at http://sagan.earthspace.net/
“esr/writings/cathedral-bazaar/, 1997.

[14] David A. Rusling. The linux kernel. Avail-
able at http://sunsite.unc.edu/Linux/LDP/
tlk/tlk.html.

[15] Mary Shaw and David Garlan. Software Archi-
tecture: Perspectives on an Emerging Discipline.
Prentice Hall Press, April 1996.

[16] Abraham Silberschatz and Peter Baer Galvin. Op-
erating System Concepts. Addison-Wesley, 5th edi-
tion, 1997.

[17] Andrew S. Tanenbaum. Modern Operating Sys-
tems. Prentice Hall, 1992.

[18] Vassilios Tzerpos and R.C. Holt. A hybrid process
for recovering software architecture. In Proceed-
ings of CASCON 1996, Toronto, Canada, Novem-
ber 1996.

[19] Vassilios Tzerpos, R.C. Holt, and Gary Farmaner.
Web-based presentation of hierarchic software ar-
chitecture. In Workshop on Software Engineer-
ing (on) the World-Wide Web, Boston, May 1997.
International Conference on Software Engineering
1997.

[20] Kenny Wong, Scott R. Tilley, Hausi A. Miiller, and
Margaret-Anne D. Storey. Structural redocumenta-
tion: A case study. IEEE Software, 11(6):501-520,
January 1995.

