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1 Introduction

There are many Linux books on the market, but many are not suitable for a
single-term university-level textbook. Typically they provide far too much
detail, or far too little, and don’t tie the material to basic concepts taught
in other undergraduate computing courses. These notes are meant to ad-
dress these issues. The initial motivation for writing them was to support
the course CISC 220(1System-Level Programming), offered by the School of
Computing at Queen’s University in Kingston, Ontario. I hope that eventu-
ally they will be useful in a wider context.

These notes assume you are already familiar with using some other op-
erating system, such as MacOS or Windows. In particular you should know
what it means to log in and invoke programs, and what file systems and
directories (or folders) are.

As a consequence of this intended audience, these notes do not explain
every detail of every command; they cover a subset that lets you get a lot
done and that get you to the point where you can read and understand more
detailed sources. There are typically many different ways to accomplish a
given task; the notes usually show only one of the ways. The writing style
is deliberately terse. Once you master the basic features described here, you
should consult the relevant man pages, or search on the World-Wide-Web,
for any command you want to understand further. When the notes refer to
searching “the manual” for a command or other topic, they mean reading
the man page for the topic and Wikipedia entries, and using Internet search
engines.

Textual conventions in these notes are:

• Sections or footnotes marked with the dagger symbol (†) are advanced
material that might be skipped in an introductory course.

• The first occurrence of a technical term is in italics; the explanation
usually follows within a few sentences or paragraphs, but may be in a
later section indicated by a cross-reference.

• Program names, what you type, and what text the computer prints in
response are in a fixed-width typewriter font.

1http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-220.html
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• Program listings use variable-width fonts; the listing-formatter pack-
age uses italics and boldface to indicate comments and keywords, re-
spectively.

• The main text normally describes the basic or normal case for its topic;
it may oversimplify to make the explanation easier to understand.
There are footnotes to describe minor complexities; you can ignore
them on a first reading.

This version of the notes can be printed; URLs are included as footnotes.
Command syntax, options, and behaviour on other UNIXTMsystems may

differ from that on the version of Linux we used while writing these notes.
This version of the notes corresponds to Ubuntu 12.09 Linux in CASlab at
Queen’s University in July 2013.

The choice of topics for these notes was governed by the class slides
for CISC220 from Fall 2012 by Margaret Lamb, who provided much useful
guidance on what material to include and how to present it.

Part I

Linux Basics

2 Overview

Linux is a free operating system that runs on many different hardware plat-
forms, from personal computers to mainframes and supercomputers. There
is a little ambiguity in the term “operating system.” Classically it meant
software that manages what happens on a computer: a set of programs for
managing memory, the file system, external devices such as terminals and
network communication, loading and running application programs, and se-
curity for reducing the possibility of applications interfering with each oth-
ers’ use of the basic functions of the computer. On Linux, this portion of the
operating system is referred to as the kernel. These days “operating system”
can include some additional software, such as basic user interface facilities
and some utility programs.

Figure 1 shows the layers making up the Linux system. A user interacts
with some form of user interface, an application that runs on top of the ker-
nel. One particular kind of user interface is the shell, a textual command-line
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Figure 1: Linux Operating System

Classic “layered operating system” diagram specialized for
Linux.

interface that is the primary (currently only) way these notes describe how
to use Linux.

2.1 History

This is a very brief summary of the history of Linux; for more context, you
should consult Wikipedia and other online sources.

Linux is a variant of UNIX. In the 1960s, the research subsidiary of the
Bell Telephone System, Bell Laboratories (now ATT Bell Laboratories) and
others developed a very complex operating system called MULTICS (Multiplexed
Information and Computer System). It embodied many good ideas, but
had poor performance and was never commercially successful. In the early
1970s, Bell employees created a much simpler and more efficient system
called UNICS (Uniplexed Information and Computer System); the spelling
was later changed to UNIX. It was originally written in assembly language
for the PDP-7, but in 1973 was translated to C2 (sometimes called a “portable
assembly language”); this made porting it to other hardware much easier.

In 1988 the Institute of Electrical and Electronic Engineers (IEEE, pro-
nounced “I triple E”) released a standard for UNIX-like operating system
interfaces, IEEE 1003, that was eventually called POSIX. Many operating
systems were or became POSIX-compliant, at least in part; thus some de-
scriptions of UNIX features refer to POSIX.

On October 5, 1991, Linus Torvalds, then a Finnish university student,
released the first version of the Linux kernel. Since it provided a key subset
of the facilities of UNIX, it was immediately able to run many of the applica-
tions developed by the Free Software Foundation, which were collectively

2We cover some aspects of C programming in Section III.
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called GNU (a recursive acronym standing for “GNU is Not UNIX”). Thus the
FSF and others prefer to call the whole system (kernel plus key applications)
GNU/Linux. It is now “mostly” POSIX-compliant.

UNIX and many of its derivatives are proprietary commercial systems In
contrast, GNU/Linux is free, which has made it very popular with general
non-commercial users and hobbyists. Because it is free, and source code for
it is freely available, several different organizations have released their own
“distributions,” with variations in exactly what software is available “out of
the box” and where various files are placed. The distribution we use in the
CASlab, and on which these notes are based, is Ubuntu 12.09.

2.2 Shells

In a typical graphical user interface (GUI), you invoke programs by touch-
ing or clicking on some icon, which represents program to run or a file of
a particular type (in which case your action runs some specific application
associated with that type of file). With a command line interface (CLI), you
type names of commands and supply arguments. A GUI system is usually
much easier to learn and use than a command-line user interface – but only
for the most common functions you want to perform. A CLI is usually
harder to learn, but makes it possible to do more advanced functions. A
GUI is sometimes referred to as WYSIWYG (What You See Is What You
Get); however it can also be disparaged as a WYSIAYG (What You See Is
All You’ve Got). A CLI can make it possible to specify advanced function-
ality, at the cost of a steeper “learning curve.”

The fact that the shell is an ordinary application means that there can be
many different shells. These notes describe a shell called bash (which stands
for Bourne-again shell). There are several others in common use, including

• sh, the original Bourne shell, developed by Stephen Bourne of Bell
Labs and first released in 1977.

• csh, the “C shell,” which replaced the programming language used in
shell scripts (Section 5) with one resembling C.

• ksh, the “Korn shell,” developed by David Korn at Bell Labs in the
early 1980’s, combined features of sh (with which it was backward-
compatible) and csh.
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bash was developed by the Free Software Foundation; it combines features
of sh and ksh but is not quite backward-compatible with them.

Linux systems do provide GUIs, and a shell can be accessed from within
each GUI. As with shells, there are several different GUIs.

2.3 Interacting with bash

When you log into a Linux system like the Queen’s University CASlab, you
are faced with a command prompt such as

dal@linux2:~:$

Your prompt may look different, because you can customize it (Section 4.3).
This particular prompt has the general form

your user name@ short computer name: current working directory:$
The character ~ is an abbreviation for “your home directory,” your current
working directory directly after logging in. At this point you are expected to
type commands after the prompt, such as

dal@linux2:~:$ pwd

/cas/staff/dal

This and later examples show you

• the prompt (as above),

• the command you type (pwd), and

• the textual output (/cis/staff/dal, the full name of the current di-
rectory).

The pwd command (print working directory) prints the full path name of the
current working directory – the one in which, by default, any files you ex-
amine are found and where those you create will be placed.

Figure 2 shows a short bash session.

• cd (change directory) changes the current working directory from the
home directory, ~, to one of its subdirectories, ~/220.

• ls (list) shows the names of the files (pride.txt) and directories (poems)
stored within the current directory.

• ls poems lists the files in subdirectory poems.

• cat poems/jabberwocky shows the contents of file poems/jabberwocky,
the first few lines of Lewis Carroll’s famous poem.
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dal@linux6:~$ cd c220

dal@linux6:~/c220$ ls

poems/ pride.txt

dal@linux6:~/c220$ ls poems

bed gentle jabberwocky michaelis road tolls

birches gustibus letter nov_guest stop wall

frog hope mary ring summer will

dal@linux6:~/c220$ cat poems/jabberwocky

Jabberwocky

Lewis Carroll

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

dal@linux6:~/c220$

Figure 2: Example bash Session

To understand these examples more fully, you need to understand the Linux
file system.

3 The File System

The Linux file system has four major components.

• A device is a physical piece of hardware, such as a hard drive, optical
reader, or flash drive. Each device has its own file structures, which
typically include a top-level directory, a collection of inodes describing
individual files, tables showing where to find free space for new files,
and the actual contents of the files.

• An inode is the description of a single file, including what device it
is on, where to find the contents of the file, dates (and times) when
the file was last accessed or modified, and permissions (Section 3.5)
governing who can perform what operations on the file. It does not
contain the name of the file. Each inode has an integer called its “inode
number,” which you can think of as an index into a big array of inodes.
Inode numbers are unique within a device: no two inodes on a device
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have the same number, but two inodes on different devices might have
the same number.

• File contents are stored separately from inodes; inodes contains point-
ers (such as disk addresses) to file contents. The contents of the file are
data in the file; the descriptive information in the inode is metadata –
data about the file.

• A directory is one specific kind of file whose contents are essentially
just a table of pairs of names and inode numbers.

There is a top-level directory named / (“slash;” also called the root direc-
tory) from which all other directories and files can be reached. The top-level
directories of different devices are one or two levels down in the hierar-
chy. For example, on CASlab the three directories /proc, /cas/staff, and
/cas/student are on different devices.3

Suppose the current working directory is /cis/staff/dal as in the bash

session of Figure 2, and a program wishes to read file c220/pride.txt (rel-
ative to the current working directory). Figure 3 shows the correspond-
ing file structures. The top three boxes are inodes, labeled with their path
names and inode numbers. Each has a pointer to its file contents. The left-
most two boxes are directories, so their contents are name/number pairs.
The leftmost box is the inode for the current working directory; it has in-
ode number 401776. It has a name and inode number pair for c220 plus
other information (represented by ...). When a program wants to open
c220 it calls a kernel function and supplies the path name c220/pride.txt.
The kernel interprets the name as a set of directions for traversing the di-
rectory structure. It finds the entry c220 in the current directory and gets
the corresponding inode number 395612. It opens that inode and reads the
information corresponding to the second box. This contains some informa-
tion about the c220 directory (not shown) and four entries The entry with
name . (pronounced “dot”) contains the inode number of c220 itself. The
entry with name .. (pronounced “dotdot”) contains the inode number of its
parent directory /cis/staff/dal/. All directories contain entries for these
two names, with the appropriate inode numbers.

Within inode 395612 (/cis/staff/dal/c220/) the kernel finds the en-
try pride.txt and finds the inode number 591028. Since this is the end of

3The mount command links separate devices and file structures into the directory struc-
ture; it is beyond the scope of these notes.
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Figure 3: Inode Structure for c220/pride.txt

Inode structure. Solid lines with arrows show connections
between inodes and file contents; this is an abstraction of
what might be multiple pointers to multiple chunks of con-
tent. Dashed lines with diamonds show indirect connections
via inode numbers.

the path, and a regular file, it stops. Inode 591028 has various information
about the file, plus a pointer to the file contents. The bottom box is the file
contents (which are not an inode): the bytes representing Jane Austin’sPride
and Prejudice, surrounded by some Project Gutenberg boilerplate text.

It is important to emphasize that the inode for a file is stored separately
from its contents. The contents are the actual data in the file; the inode
is metadata – data about the file. Metadata can change without changing
contents. For example, each time anyone reads a file, the access time of the
file changes to the date and time the file was opened, but the contents do not
change. When someone writes to a file, the modification time changes as well
as the access time. When someone changes the access control permissions
(Section 3.3 on page 13), the inode and its change time updates but the file
contents and modification time do not.

The directory /dev is special: the “files” within it represent physical and
logical devices. The details of /dev are beyond the scope of these notes, but
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a few are worth noting:

• /dev/null is a “device” with no contents. Reading from it immedi-
ately yields end-of-file, and writing to it is ignored. If you were testing
a program you might tell it read from /dev/null just to verify that its
end-of-file processing worked, and might tell it to write to /dev/null

if you wanted to ignore some of its outputs.

• /dev/stdin, /dev/stdout, and /dev/stderr represent the standard in-
put, output, and error streams of the current process (Section 4.2 on
page 27).

• /dev/tty is the current “terminal” – the terminal or window of the
shell that launched the process in question. This is different from
stdin, stdout, and stderr, since those can be redirected to regular
files.

3.1 Hard Links

The use of inodes means that an ordinary (non-directory) file does not nec-
essarily have a unique name. Two different entries can have the same inode
number – either entries in two different directories, or two entries in the
same directory with different names. These are often referred to as “hard
links” to contrast them with symbolic links (Section 3.6 on page 19). You can’t
create a hard link to a directory;4 consequently, each directory has a unique
name and a unique “parent directory” that contains it.

Figure 4 shows two directories (inode1 and inode2) and an ordinary file
(inode3). Names are text; arrows represent inode numbers. Each directory
has an entry . (dot) with its own inode number, and .. (dotdot) with its
parent’s inode number. With inode1 as the current working directory:

• Pathnames nameN and name1/name1a refer to the same file, inode3.

• Pathnames . and name1/.. both refer to the current working direc-
tory.

The boxes saying other entries stand for an arbitrary number of other name/in-
ode pairs, possibly none.

4Except via the mkdir command (page 11).
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Figure 4: Multiple Hard Links to a File

Multiple hard links to inode3. Dashed arrows represent indi-
rect connections via inode numbers; solid mean direct inode-
to-contents connections via disk addresses.

3.2 File-related bash Commands

Given a basic understanding of the file system, we can describe some gen-
eral features of bash commands, using file system manipulation commands
as examples. The general form of a shell command is

name [ flags ] [ other arguments ]

The various portions of this command line are:

• The name identifies the command. The name can be a file system path
name for an executable file, but it can also be a simple name without
slashes. Some such simple names are “built into” the shell (that is,
interpreted directly by the shell program, without invoking any sep-
arate programs), while for others the shell finds the executable file by
looking for a file with that name in a collection of directories called the
search path (Section 4.5) (or just “the path”).
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• Items surrounded by square brackets [] are optional.

• flags is a set of “command line options” that modify the behaviour of
a command. Without them, the command has a certain default be-
haviour. Each flag starts with a dash or hyphen (-) and almost always
consists of a single letter. You can run several flags together after a
single dash; thus ls -l -t means the same thing as ls -lt.

• other arguments are whatever else the command needs to perform its
functionality. They often consist of pathnames for files on which the
command operates.

The common bash commands dealing with files are:

• Section 2.3 on page 5 introduced the pwd command to print the current
working directory, and the cd command to change it.

• ls (as shown in Figure 2 on page 6) shows the contents of the current
working directory. Normally it shows the names in several columns,
sorted by name. ls -t shows them in order of modification time (page 8),
most recent first. ls -l shows a “long” form with many pieces of in-
formation about the files, such as size, modification times, what user
owns it, and its permissions (Section 3.3); ls -i adds inode numbers.

• rm removes a link to a file. This does not necessarily delete the file; the
file is deleted when the last hard link to it is removed. It does not place
the file in any sort of “recycle bin,” so you must use it very carefully.
Since commonly there is only a single link to an ordinary file, many
Linux system administrators arrange that rm prompt for confirmation
that you intend to delete a file – but this is not the default. To delete
a directory, you should use rmdir instead of rm. The -i (“interactive”)
flag causes rm to ask you to confirm for each file whether you wish to
delete it. The -f command suppresses error messages about deleting
files that don’t exist.

• mkdir pathname creates a new directory with the given path name
(which can include slashes; every name but the last one in the path
must already exist). This is distinct from creating a file because a di-
rectory contains the two special entries named . (a link to itself) and
.. (a link to its parent directory). This means new directories have
three specific hard links (Section 3.1 on page 9): one from the parent
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directory to the new one, and the special links . and .. for the new
directory and its parent.

• rmdir pathname by default removes a directory if it is empty; if you
want to remove a whole directory tree, you should delete all files in it,
and all its subdirectories, by hand.5

• touch pathname creates an empty file if it doesn’t already exist, or up-
dates the modification time of the file (Section 3 on page 8) if it does
exist. Updating the modification time can be useful with the -newer

flag of find (page 54), or to force recompilations when using the make

command (Section 15.3 on page 117).

• cp copies an ordinary file to a new location. The two typical usages
are

– Copy a single file:
cp pathname1 pathname2

copies the contents of the file named pathname1 to one named
pathname2.

– Copy a collection of ordinary files to a directory:
cp pathname1 · · · pathname2 directory

The directory must already exist.

In both cases cp by default overwrites the destination file if it already
exists and creates it if it doesn’t. cp -i asks for confirmation before
overwriting.6

• ln makes a new link for a file. Consider Figure 4 on page 10, and
suppose inode1 were the current directory and were empty (had no
files). The diagram could have been established by the sequence of
commands

mkdir name1

touch nameN

ln nameN name1/name1a

touch name1/nameMa

5There are ways to remove a directory and all its contents recursively, but it is a very bad
idea to do so unless you’re absolutely sure it’s what you mean to do.

6There is a bash shell mechanism called aliasing (Section 4.5 on page 37) that lets you
arrange for cp to mean cp -i; some system administrators make a default setting in your
initial bash login script (Section 5 on page 43).
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• mv moves a file. If the destination is in the same file system, it is a
combination of ln to the new name and rm of the old name. If the
destination is on a separate file system, it is equivalent to cp followed
by rm.

• stat prints the contents of an inode in a readable form. Figure 5 shows
the results of a stat command.

Figure 5: Results of stat Command
dal@linux3:~/notes/poems$ stat mary

File: ‘mary’

Size: 105 Blocks: 16 IO Block: 1048576 regular file

Device: 17h/23d Inode: 48660951 Links: 1

Access: (0600/-rw-------) Uid: (2133180/ dal) Gid: ( 200/ student)

Access: 2013-08-08 11:45:41.000000000 -0400

Modify: 2013-07-05 14:27:12.000000000 -0400

Change: 2013-07-05 14:27:12.000000000 -0400

Birth: -

dal@linux3:~/notes/poems$ ls -l mary

-rw------- 1 dal student 105 Jul 5 14:27 mary

dal@linux3:~/notes/poems$

The first Access is file permissions; Uid and Gid are user (owner) and
group IDs (Section 3.5 on page 19). The second Access, plus Modify

and Change, are the corresponding dates and times (Section 3 on
page 8).

3.3 File Permissions

Any system shared by multiple users needs a way to control access to files.
Linux does this by introducing the idea of an owner for each file – the login
name of whoever created it – and group – a collection of users created by the
system administrator.7 Each file (including each directory) has three sets of
permissions describing who can manipulate the file and in what way. For an
ordinary file,

• r (“read”) means the user can read the file: list its contents.

• w (“write”) means the user can write to the file: change its contents.

• x (“execute”) means the user can execute the file, that is, run it as a
program.

7For more on owners and groups see Section 3.5 on page 19.
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Normally file owners have rw- permissions on their ordinary files and rwx

permission on their programs (where the - indicates a lack of the x permis-
sion).

For a directory, the permissions are slightly different.

• r means the user can list the contents of the directory; this is a con-
sequence of being able to read it like an ordinary file. If you don’t
have read permission, you can’t discover the names of any files in the
directory.

• w means the user can create and delete files in the directory; this is a
consequence of being able to change the directory.

• x means the user can look up a file in the directory – that is, get the
inode for a file, if the user knows its exact name. You can have x per-
mission on a directory without having r permission. This means the
owner of the file can arrange for other people to read (and even write)
files a directory without being able to find the names of every file.
The Linux kernel reads the directory itself to find a specific file name,
but won’t let users read the directory themselves. See Section 3.4 on
page 17 for an example.

Normally owners have rwx permissions on their directories, and give read
and execute permissions (r-x) for everyone else on directories they want to
be publicly readable.

The representation of a permission (which you can view with the com-
mand ls -l; see Figure 6) is a sequence of seven characters of the form
kabcdefghi The first letter (indicated by k) is not actually a permission; it is
the kind of file (d for a directory, - for an ordinary file, and l for a sym-
bolic link.8 The next three sets of three letters describe permissions. The first
group of three (abc) show permissions for the owner, the second (def ) for
the group, and the third (ghi) for everyone else. In each three-letter group,
each position corresponds to one of the three permissions (read, write, or
execute). If the letter is a -, it means the corresponding group of people lack
that permission. If it isn’t -, it is a specific other letter.

1. In the first position (a, d, and g) an r means the corresponding people
have read permission.

8See Section 3.6 on page 19.
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Figure 6: Long-Form directory Listing

dal@linux6:~/notes/experiment$ ls -liaF . name1

.:

total 28

48660968 drwx------ 3 dal student 4096 Jul 9 09:18 ./

48660888 drwx------ 4 dal student 4096 Jul 9 09:14 ../

48660971 drwx------ 2 dal student 4096 Jul 9 09:17 name1/

48660972 -rw------- 2 dal student 0 Jul 9 09:16 nameN

name1:

total 24

48660971 drwx------ 2 dal student 4096 Jul 9 09:17 ./

48660968 drwx------ 3 dal student 4096 Jul 9 09:18 ../

48660972 -rw------- 2 dal student 0 Jul 9 09:16 name1a

48660974 -rw------- 1 dal student 0 Jul 9 09:17 nameMa

dal@linux6:~/notes/experiment$

Results of ls -liaF. Columns are inode number, permis-
sions, number of hard links, owner (dal), group (student),
size, modification date/time, name.

2. In the second position (b, e, and h) a w means the corresponding people
have write permission.

3. In the third position (c, f, and i) an x means the corresponding people
have execute permission.

To see information about a directory in detail, you can use the command
ls -liaF.9 Figure 6 shows the results of ls -liaF in the directory with in-
ode inode1 in Figure 4 on page 10. There are several things to note about this
example.

• Since the shell prompt shows the current directory (between the : and
the $), . is also ~/notes/experiment.

9-l (“long”) shows most of this information. -i adds inode numbers. -F “flags” entries
with a character indicating its type; in particular, this is where the trailing / comes from at
the end of directory names. There is a convention that ls by default doesn’t show “hidden”
files (those whose names start with a dot); the -a option shows these files.

Version 1.6 15



• name1 and all four entries starting with . are marked as directories
(first character of the permission is d). All the ordinary files have a -

in this position.

• None of the files and directories are accessible to anyone but the owner
(- in the last two groups of three permission flags).

• The owner can read (list), write (create files in) and execute (look up
files in) all the directories.

• The owner can read and write all the ordinary files, but cannot execute
them as programs.

• The inode numbers for nameN and name1/name1a are the same; the lat-
ter had been created with a ln (create hard link) command.

• ./name1 and name1/. have the same inode number. Each has 2 hard
links.

• . and name1/.. have the same inode number. There are three links,
because the parent of . (~/notes) also links to .

• Even “small” directories like this are fairly large – 4 kilobytes in this
case.

• All the ordinary files are of size 0, since they were created with touch

rather than with something that would give them real content.

To change permissions on a file you can use the chmod command.10 The
simplest form is

chmod octal file(s)

The octal number is a set of three digits each composed by adding 4 for r

permission, 2 for w, and 1 for x. Thus rw- permission is 6, and r-x is 5. If
there are less than three octal digits, the leading ones are taken to be 0. The
first digit is permissions for the owner, the second for the group, and the
third for everyone else.

chmod 750 file1 file2

There is a complex mnemonic syntax that uses letters instead of numbers;
the two most common are

10For historical reasons this isn’t something less unexpected like chperm; the name stands
for change mode.
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chmod go= file1 file2

to remove all permissions for group (g)and other (o),
chmod a+rx file1 file2

to add execute permission for everyone (useful after you create a shell script,
Section 5).

By default you should set group and other permissions to none (go=).
This isn’t the default unless your system administrators have made it so.
The command

umask octal

sets the file mode creation mask to the given octal number. When a program
creates a file specifying certain permissions, the kernel turns off any bits
with a 1 in the umask. Thus umask 077 leaves owner permissions alone but
ensures group and other permissions are turned off. There is also a symbolic
form of umask as with chmod. To find the current umask you can type:

dal@linux6:~$ umask

0077

dal@linux6:~$ umask -S

u=rwx,g=,o=

3.4 Directory Read and Execute Permissions†
Section 3.3 explained what read and execute permissions meant for directo-
ries, but typically beginners have trouble understanding why there should
be a difference. To recap,

• r permission lets you read the directory as a file, and thus list all its
contents – the names and inode numbers of every file and subdirec-
tory within it.

• x permission lets you look up the inode number associated with a spe-
cific name, even if you can’t see all the names in the directory.

This difference lets you make a very fine distinction in how people can ac-
cess your files. Suppose you have a shared directory into which you put
files you want other people to read. You might want anyone to be able
to read rant.txt but only members of your group to read iHateC220.txt.
Furthermore you might not want the professor to even know iHateC220.txt

exists. You could achieve this via
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cd shared

chmod a+r rant.txt

chmod o=,g=r iHateC220.txt

chmod g=rx,o=x .

Figure 7 shows the effects of these commands. More calls to chmod would

Figure 7: Directory Without Read Permission

dal@linux6:~/notes$ cd shared

dal@linux6:~/notes/shared$ ls -liaF .

total 32

48660973 drwx------ 2 dal student 4096 Jul 11 10:44 ./

48660888 drwx------ 5 dal student 4096 Jul 11 10:43 ../

48660977 -rw------- 1 dal student 96 Jul 11 10:44 iHateC220.txt

48660976 -rw------- 1 dal student 68 Jul 11 10:44 rant.txt

dal@linux6:~/notes/shared$ chmod a+r rant.txt

dal@linux6:~/notes/shared$ chmod g=r iHateC220.txt

dal@linux6:~/notes/shared$ chmod g=rx,o=x .

dal@linux6:~/notes/shared$ ls -liaF .

total 32

48660973 drwxr-x--x 2 dal student 4096 Jul 11 10:44 ./

48660888 drwx------ 5 dal student 4096 Jul 11 10:43 ../

48660977 -rw-r----- 1 dal student 96 Jul 11 10:44 iHateC220.txt

48660976 -rw-r--r-- 1 dal student 68 Jul 11 10:44 rant.txt

dal@linux6:~/notes/shared$

Creating a directory with x but not r permissions to make
one file readable to everyone and another only to the group
and invisible outside the group.

be needed to give x permission to ~ and ~/notes – but beware that opening
up directories like this would would let people read and even write files for
which you forgot to turn off “group” and “other” permissions.

You can tell everyone “see ~me/shared/rant.txt” and they could use a
program like less to read it. Only your group (student) can ls ~me/shared”
and see both file names, and only they can read iHateC220.txt. Everyone
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else would get an error message.11

No one can cd to ~me or ~me/notes, since they lack r permission.

3.5 Owners and Groups

The owner of a file is initially the user name (login identifier) of whoever
created it. There is a chown command to change owners; it only works if
invoked by the current owner or by a system administrator. “A system
administrator” means the special “superuser”, the login id root; it has full
permission to change any files in the system.

A group is a list of user names created by a system administrator. A
user can be in several groups; the groups command lists them. One of these
groups is primary (the one you’re in when you log in). The initial group of
a file is the primary group of its creator; the chgrp command can change
it. If any of the groups you are in are the same as that of the file, you have
the group permissions for that file (the second group of three permissions
shown by ls -l) – unless, of course, you are the owner, in which case owner
permissions apply instead.

If you are in a team project, typically your team would have its own
group; you’d be in a general student group as well your team’s special
group. You might create shared directories and files whose group is the one
for your team.

3.6 Symbolic Links

Hard links have three problems:

• You can’t make hard links across file systems; a directory on one disk
drive can’t make a hard link to something on a different drive, because
inodes are device-specific.

• You can’t make hard links to directories except via mkdir commands.

• Some editors (such as emacs) write a new file and unlink the old file
instead of modifying the old file in-place (as vi does). Their operation
is basically

11Of course there is nothing preventing a system administrator from putting professors
in the student group as well as a faculty or staff group.
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– Copy the contents of the old file into internal memory.

– Create a new temporary file with a different name, usually in the
same directory as the old file.

– When the user “saves” the file, write the contents of internal
memory to the temporary file, unlink the old file,12 and rename
the temporary file to the old name.

A hard link elsewhere references the old file, not the new one.

To solve all these problems, Linux has symbolic links. A symbolic link is a
special file type whose contents are a pathname. When someone opens the
symbolic link, Linux interprets the pathname to find the file it names, and
opens that file instead.

You create a symbolic link with the -s option to the ln command. For
example, when the current directory is

/cis/staff/dal/notes/experiment

(the same as in Figure 4) the command
ln -s /cis/student/somebody /asgt1.c student.c

creates a file in the current directory whose name is student.c, marked as
a symbolic link, and whose content is the string

/cis/student/somebody /asgt1.c

(possibly including a bit more information, depending on the details of the
Linux implementation).

When using a symbolic link, two sets of permissions are involved: those
of the symbolic link itself, and those of the file it names. When you do an
ls -l on a symbolic link, you see permissions lrwxrwxrwx, but this doesn’t
mean you can actually do anything with the file it names. Linux follows the
path contained in the symbolic link and uses the permissions of the actual
file. The permissions on the symbolic link itself are never used.

3.7 (Lack of) File Formats

Linux does not impose any particular constraints on the contents of files;
any “format” is just a convention shared among some user-level programs.
The standard UNIX/Linux convention for text files is to interpret a “new-
line” character (\n, “line feed”) as the end of the line. Unfortunately, files

12If the editor “keeps backups” it renames the old file instead of unlinking it. Linux users
on CASlab will see Emacs backup files with a ~ at the end of their name.
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imported from Microsoft Windows follow a different convention, wherein
lines end with \r\n (“carriage return” followed by “linefeed”). The Win-
dows convention is historical: on typewriters and hardcopy computer ter-
minals there were two separate characters to end a line. “Carriage return”
(\r) returned the mechanism holding the paper so that new keystrokes
would place ink on the left-hand edge. “Line feed” (\n) would rotate the
cylinder holding the paper so that new keystrokes would occur on the next
line. The two mechanisms were separate; a bare carriage return would al-
low overstriking of keystrokes, whereas a bare line feed would start a new
line in the middle of the paper (wherever the carriage happened to be at
that moment).

The commands fromdos and todos convert their arguments between
Windows and Linux formats “in-place:” they modify the file rather than
making a copy.

Figure 8 shows the contents of the file mary containing the poem “Mary
had a little lamb.” ls shows that it is 105 bytes long. wc (“word count”)
shows how many lines (4), words (20), and characters/bytes (105) are in the
file. cat shows the contents of the file with each character interpreted in
whatever way “the terminal” interprets it – so that newlines start text on a
new line. od -c (“octal dump”) shows the contents as individual characters
with escape sequences for non-printing characters (just \n in this case); the
numbers on the left edge are character counts in octal (16 characters per
line). The last few lines show the results of converting a Linux-format poem
to DOS (Windows) format.

Figure 9 shows a file with non-printing “control characters” – in this
case, control-A and control-H. As before, cat shows the characters in what-
ever form “the terminal” interprets them. The control-A does not print (note
the two consecutive spaces after the word “control-A”) whereas the control-
H (backspace) moves back one character (note the single space after the
word “control-H”). od shows the control-A as octal 001, and the control-H
as the escape sequence \b.
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Figure 8: File Contents, od, and wc

dal@linux3:~/notes/poems$ ls -l mary

-rw------- 1 dal student 105 Jul 5 14:27 mary

dal@linux3:~/notes/poems$ wc mary

4 20 105 mary

dal@linux3:~/c220/poems$ cat mary

Mary had a little lamb,

Little lamb, little lamb.

Mary had a little lamb

Whose fleece was white as snow.

dal@linux3:~/notes/poems$ od -c mary

0000000 M a r y h a d a l i t t l

0000020 e l a m b , \n L i t t l e l

0000040 a m b , l i t t l e l a m b

0000060 . \n M a r y h a d a l i t

0000100 t l e l a m b \n W h o s e f

0000120 l e e c e w a s w h i t e

0000140 a s s n o w . \n

0000151

dal@linux3:~/notes/poems$ od -x mary

0000000 614d 7972 6820 6461 6120 6c20 7469 6c74

0000020 2065 616c 626d 0a2c 694c 7474 656c 6c20

0000040 6d61 2c62 6c20 7469 6c74 2065 616c 626d

0000060 0a2e 614d 7972 6820 6461 6120 6c20 7469

0000100 6c74 2065 616c 626d 570a 6f68 6573 6620

0000120 656c 6365 2065 6177 2073 6877 7469 2065

0000140 7361 7320 6f6e 2e77 000a

0000151

dal@linux3:~/notes/poems$ cd ..

dal@linux3:~/notes$ cp poems/mary mary.txt

dal@linux3:~/notes$ todos mary.txt

dal@linux3:~/notes$ od -c mary.txt

0000000 M a r y h a d a l i t t l

0000020 e l a m b , \r \n L i t t l e

0000040 l a m b , l i t t l e l a m

0000060 b . \r \n M a r y h a d a l

0000100 i t t l e l a m b \r \n W h o s

0000120 e f l e e c e w a s w h i

0000140 t e a s s n o w . \r \n

0000155

dal@linux3:~/notes$
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Figure 9: File Containing Control Characters

dal@linux3:~/notes$ cat controlChar.txt

This line has a control-A and

a control-H character, each

surrounded by spaces.

dal@linux3:~/notes$ wc controlChar.txt

3 13 84 controlChar.txt

dal@linux3:~/notes$ od -c controlChar.txt

0000000 T h i s l i n e h a s a

0000020 c o n t r o l - A 001 a n d \n

0000040 a c o n t r o l - H \b c h

0000060 a r a c t e r , e a c h \n s u

0000100 r r o u n d e d b y s p a c

0000120 e s . \n

0000124

dal@linux3:~/notes$
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4 The bash Shell And Basic Commands

Section 3.2 on page 10 introduced the basics of the bash shell, including
commands that affect the file system. This section describes bash more thor-
oughly.

A bash command line is of the form
name [ flags ] [ other arguments ]

It is very common for most of the arguments to be file system path names
identifying which files the command will operate on.

Two simple commands for illustrating some bash features are cat (short
for “concatenate”) and echo. The directory ~/notes/poems contains the
files:

dal@linux6:~/notes/poems$ ls

backup/ frog hope mary ring summer will

bed gentle jabberwocky michaelis road tolls

birches gustibus letter nov_guest stop wall

dal@linux6:~/notes/poems$

Figure 10 shows a typical usage of cat. In the current (poems) directory
it finds the two files jabberwocky and bed and writes their contents to the
terminal13 in the order you listed them on the command line. In contrast,
the echo command simply writes its arguments – their literal text – to the
terminal:

dal@linux6:~/notes/poems$ echo put jabberwocky to bed

put jabberwocky to bed

dal@linux6:~/notes/poems$

echo may seem trivial but is useful for illustrating several more complex
features of how bash interprets a command line. For example, echo takes
some flags as arguments, which it doesn’t write to the terminal:

dal@linux6:~/notes/poems$ echo -n here is a prompt

here is a promptdal@linux6:~/notes/poems$

The -n switch causes it to omit the newline at the end, which causes the next
bash prompt to start on the same line as the echoed text. This can be used in
shell scripts (Section 5 on page 41) to write their own prompts, but the read

command’s -p option is a better way to do this (Section 5.1 on page 43).

13This is an oversimplification; see Section 4.2 on page 28.
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Figure 10: Example of Using cat

dal@linux6:~/notes/poems$ cat jabberwocky bed

Jabberwocky

Lewis Carroll

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

Bed in Summer

Robert Louis Stevenson

In winter I get up at night

And dress by yellow candle-light.

In summer quite the other way,

I have to go to bed by day.

I have to go to bed and see

The birds still hopping on the tree,

Or hear the grown-up people’s feet

Still going past me in the street.

And does it not seem hard to you,

When all the sky is clear and blue,

And I should like so much to play,

To have to go to bed by day?

dal@linux6:~/notes/poems$

If you cat some very long file, your terminal will scroll down so that you
only see the last screenful of text. The commands head and tail show the
first and last few lines of a long file, respectively. If you want to see pause
at the end of each screenful, you can use less instead of cat. Table 1 shows
you the main commands you can use within less to move around in the
file.

If you want to find out more about a given command, you can use
the man (“manual”) command. man cat for example shows documentation
about the cat command. man man shows the man commands own documen-
tation. Since these notes only show the basics of each command, you should
use man to find out more. The argument doesn’t need to be a shell command;
the “manual” includes, for example, information about various functions in
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Table 1: Commands Within less
Command Functionality
f or space forward one screenfull
b backward one screenfull
e or ENTER forward one line
y backward one line
h display help screen, which describes more commands
q exit

the standard C program library. Internally, man uses a program similar to
less to display screensful, so you can use the commands of Table 1 to move
around in the manual.

4.1 Wildcards and Filename Expansion

The shell interprets certain characters on a command line as special; * (as-
terisk or star) is one of them. If you try:

dal@linux6:~/notes/poems$ echo this g* has a star

this gentle gustibus has a star

dal@linux6:~/notes/poems$

instead of a copy of the arguments you typed, you get

1. The word this.

2. A list of all the files in the current directory starting with g

3. The words has a star.

The shell turned the g* into item 2. Had we omitted the g we would have
seen a list of all the files in the current directory.

This is an example of command line expansion, wherein the shell turns
some sequences of characters you type into other text before passing it to
the command. This particular example is called a filename wildcard or just
wildcard. A slightly more complex example is

dal@linux6:~/notes/poems$ ls -l *op*

-rw------- 1 dal student 378 Jul 5 14:27 hope

-rw------- 1 dal student 671 Jul 5 14:27 stop

dal@linux6:~/notes/poems$
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The shell took *op* to mean “any file in the current directory whose name
contains the characters op, possibly preceded or followed by other charac-
ters.” The * was a pattern matched by any sequence of characters. The other
wildcard character is ?, which matches any single character:

dal@linux6:~/notes/poems$ echo w?ll

wall will

dal@linux6:~/notes/poems$

The sequence [list of characters ] matches any one character in the list.
Thus the previous example could have been written

dal@linux6:~/notes/poems$ echo w[ai]ll

wall will

dal@linux6:~/notes/poems$

It would not have matched a file named well, whereas ? would have.
A very special form of expansion is the tab character (or control-i, writ-

ten ^i). If you type this after a partially-typed file name, the shell will imme-
diately substitute the rest of the file name (plus a trailing space). Thus in the
poems directory, ja^i completes to jabberwocky. If there were two files that
started with the same characters, it would complete up to just before the
first different character; thus if there were a jabbering file, ja^i completes
to jabber without a trailing space. A second tab at this point would show
all the file names with the current prefix, then echo the current command
line:

dal@linux6:~/notes/poems$ ls -l jabber^i^i

jabbering jabberwocky

dal@linux6:~/notes/poems$ ls -l jabber

At this point typing w^i would complete the name to jabberwocky. An
online experiment or demo should clarify this example.

Section 4.3 on page 32 describes several other expansions bash performs.

4.2 I/O Redirection

So far we have shown all program output going to the screen (“the termi-
nal”). You can redirect output to a file instead, using the sequence >filename:

dal@linux6:~/notes/poems$ cat jabberwocky bed >catenated
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At this point we can use the head and tail commands to look at the first
and last few lines of the file; they take an argument saying how many lines
to show.

dal@linux6:~/notes/poems$ head -4 catenated

Jabberwocky

Lewis Carroll

’Twas brillig, and the slithy toves

dal@linux6:~/notes/poems$ tail -3 catenated

When all the sky is clear and blue,

And I should like so much to play,

To have to go to bed by day?

dal@linux6:~/notes/poems$

What is going on here is that programs generally don’t write to “the termi-
nal;” they write to their standard output, which defaults to the terminal. The
> character causes the shell to set the command’s standard output to the
given file.

Suppose we tried to cat several filenames, one of which did not exist:

dal@linux6:~/notes/poems$ cat jabberwocky ug bed >catenated

cat: ug: No such file or directory

The standard output still goes to file catenated as before, but an error mes-
sage has appeared on the terminal. A program typically writes all its normal
output to its “standard output,” but it typically sends its error messages to
its standard error instead. Like standard output, standard error defaults to
the terminal. When you redirect standard output, the only thing left to go
to the terminal is the error messages.

You can redirect standard error separately from standard output by writ-
ing the number 2 before the > character.

dal@linux6:~/notes/poems$ cat jabberwocky ug bed >catenated 2>fred

dal@linux6:~/notes/poems$ cat fred

cat: ug: No such file or directory

dal@linux6:~/notes/poems$

Standard output went to catenated; standard error went to fred.
The significance of the number 2 is that, when a program opens a file,

Linux sets up a data structure called a file descriptor. Three special file de-
scriptors are set up by the shell before the program executes. 2 is the number
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of a file descriptor for standard error. 1 is standard output.14 Thus the above
example could equally well have been:

dal@linux6:~/notes/poems$ cat jabberwocky ug bed 2>fred 1>catenated

dal@linux6:~/notes/poems$ cat fred

cat: ug’: No such file or directory

dal@linux6:~/notes/poems$

The two redirections can go in either order.
Sometimes you want to direct both outputs to the same place. The shell

provides a special syntax for this:

140 is “standard input,” which we discuss later.
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someCommand 1>someFile 2>&1

This redirects standard output (1>) to someFile, then standard error (the 2>

part) to the same file as standard output (the &1 part). Alternatively you
could type:

someCommand 2>someFile 1>&2

which redirects standard error to someFile, then standard output to the
same file as standard error. The two achieve identical effects via slightly
different paths.

If the output file for a redirect (> or >&) already exists, bash can be told
not to overwrite it via a shell option called noclobber. To see the values of all
options, use the command set -o. To set the option, use set -o noclobber.
To turn off the option, use set +o noclobber. When noclobber is set, you
can force the overwrite of a file by using >| instead of >.

Commands also have a standard input, which also defaults to the ter-
minal. For example, the sort command (without arguments) reads from
standard input, sorts it, and sends the result to standard output.

dal@linux6:~/notes/poems$ sort

this is the first typed line

but this line will come before it

and this line will come first.

^d

and this line will come first.

but this line will come before it

this is the first typed line

dal@linux6:~/notes/poems$

The first line invokes the sort command. The next four I typed; the ^d,
control-d, told Linux I wanted to end the input. The last four are the sorted
output, and the next command prompt. You can redirect standard input,
too, using the < character, as shown in Figure 11.

There also is a special form of redirecting standard input, called a here
document, which is sometimes used in shell scripts (page 44).

It is often useful to use the standard output of one program as the stan-
dard input of another. The command

cat * | less
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Figure 11: Redirecting Standard Input

dal@linux6:~/notes/poems$ cat frog

I’m Nobody! Who Are You?

Emily Dickinson

I’m nobody! Who are you?

Are you nobody, too?

Then there ’s a pair of us -- don’t tell!

They ’d banish us, you know.

How dreary to be somebody!

How public, like a frog

To tell your name the livelong day

To an admiring bog!

dal@linux6:~/notes/poems$ sort <frog

Are you nobody, too?

Emily Dickinson

How dreary to be somebody!

How public, like a frog

I’m Nobody! Who Are You?

I’m nobody! Who are you?

Then there ’s a pair of us -- don’t tell!

They ’d banish us, you know.

To an admiring bog!

To tell your name the livelong day

dal@linux6:~/notes/poems$

Contents of file frog in order, then sorted. Note the < on the sort

command to redirect its standard input. The two empty (blank) lines
in the output of sort are from the stanza separator lines in frog.

causes cat to sent the contents of all the files in the current directory to
its standard output, and less to take its standard input from cat’s output.
This is called piping; the shell introduces a special sort of “file” called a pipe
between the two programs. It is similar in effect to

cat * >temp

less <temp

rm temp

but potentially more efficient; pipes are often implemented in memory, sav-
ing file space, and the two programs can proceed in parallel, interleaving
cat writing a little of its output with less reading a little of its input. less
can do part of its work without waiting for cat to finish.
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You can build a long series of pipes; each program’s output becomes
the next’s input. In a way it is like function composition in a functional
programming language like Haskell, taught in CISC 260: Programming
Paradigms.15

4.3 Other Command Line Expansions

bash interprets several characters or character sequences in special ways,
substituting the results at the place where the characters occurred. We have
already seen pathname wildcards * and ?. This section describes several
others.

As we will see in Section 5 on page 41, the shell interprets a full-blown
programming language. One feature of any programming language is vari-
ables. The shell keeps track of several predefined variables; for example,
the sequence $SHELL or ${SHELL} substitutes the value of the variable SHELL

(the pathname of the current shell) at that point in the command line. For
example:

dal@linux6:~/notes/poems$ echo ${SHELL} $SHELL x${SHELL}y
/bin/bash /bin/bash x/bin/bashy

dal@linux6:~/notes/poems$

Other important shell variables are

• $HOME, the name of your “home” directory (the current directory im-
mediately after you logged in). The character ~ means the same as
$HOME; ~name means the home directory of user name.

• $PATH, the current search path (Section 4.5 on page 38)

• $PWD, the current working directory.

• $USER, your user name

To see the values of all the (many!) shell variables, use the set command.16

The shell variable PS1 is the prompt string bash uses to tell you it is ready
for a new command. It can contain literal characters plus some special ones:

15http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-260.html
16setwill also show you the currently-defined shell functions, which are beyond the scope

of these notes.
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• \d: current date

• \h: name of the host machine

• \j: number of jobs you have running (Section 4.6 on page 38).

• \s: shell name

• \u: user’s name

• \w: current working directory

• \!: history number of the command you’re about to enter.

You can also set your own variables:

dal@linux6:~$ today=Tuesday

dal@linux6:~$ echo This day is $today.

This day is Tuesday.

dal@linux6:~$

If you use $ on a variable that hasn’t been assigned to, its value is the empty
string.

bash expands the sequence x{a,b,c}y (without a preceding $) into the
three strings

xay xby xcy

There can be multiple such brace expansions in a line:

dal@linux3:~/notes$ echo x{a,b}y{c,d}z
xaycz xaydz xbycz xbydz

dal@linux3:~/notes$

One convenient use for brace expansion is copying a file to a backup with a
similar name:

cp longComplexFileName{,1}.txt
This has the same meaning as

cp longComplexFileName.txt longComplexFileName1.txt

Sometimes you want to issue a command that is the same, or nearly the
same, as one you recently typed. bash keeps track of what commands it
has executed recently (its history) and provides several means for reducing
typing based on it. The sequence !! means “substitute the last command

Version 1.6 33



at this place in the command line” and !number means “substitute the com-
mand with the given number at this point in the command line.” At one
point where I was generating examples for these notes, the last few lines of
the history were:

344 cat jabberwocky bed

345 echo jabberwocky bed

346 echo put jabberwocky to bed

347 cat put jabberwocky to bed

348 man echo

349 echo -n here is a prompt

350 ls

351 echo this * has a star

352 ls -l *op*

353 echo w?ll

354 ls

355 history

The command line !352 would re-execute ls -l *op*, whereas echo pre

!! post would execute echo pre history post.
To turn off these command line expansions, you can surround a portion

of your command line in quotes. Double quotes (") turn off wildcards. Sin-
gle quotes (’, apostrophe) turn off shell variable expansion ($) and history
expansion (!) also.

A more powerful form of command repetition is to edit the previous
(or current) command line; this can save a lot of retyping if you make a
mistake. The up-arrow key or the character ^p (control-p) fetches the pre-
vious command and lets you edit it; more ^p commands go back further in
the history. You can use the arrow keys to move around in the line, or the
characters ^f and ^b to move forward or backward one character. Normal
characters are inserted at the current spot. When you hit the enter key, the
shell executes the edited command. Table 2 shows the various line-editing
commands. You can use these same commands in the middle of the current
command line, too. For full details, search the bash manual for information
about “readline,” the name of the library that handles such editing.

The final form of command line expansion is command substitution. The
string $(command ) (with parentheses instead of braces) causes bash to ex-
ecute the command between the parentheses and substitute its standard
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Table 2: Command-Line Editing

^b, left arrow backward (left) one character
ESC-b move backward one word
^d, DEL delete current character
ESC-d delete current word
^f, right arrow forward (right) one character
ESC-f move forward one word
^h, backspace delete previous character
ESC-^h delete previous word
^n, down arrow replace line with next (more recent) line of history
^p, up arrow replace line with previous (less recent) line of history
^rtext search backward in this line for text.
^stext search forward in this line for text.

Most editing commands are those of the emacs text editor.a

^letter means to hold down the control key while typing the
letter. DEL means the delete key. ESC-character means to type
the escape key followed by the character, or hold down the
alt key while typing the character. Deleting and moving by
a “word” involves characters from the current point either
forwards or backwards to a word boundary.

aEmacs as a proper noun is officially spelled with a capital, but we
are nearly always referring to the lower-case Linux command.

output.17 Suppose you had a command findSome that would output a list
of file names containing a particular string, and you wanted to copy them
to a backup directory:

cp $(findSome) backup

Page 58 has an example of using grep to do this.
There are two commands whose main use is within $(...):

• dirname pathname prints the directory part of the pathname – every-
thing up to the last slash (/). If there is no slash, it prints “.” (dot,
meaning the current directory).

17There is an older way to do this with back-quotes (‘), but it is harder to read.
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• basename pathname prints just the part of the pathname after the last
slash.

• basename can take a second argument, a file extension. If the extension
matches, it prints the regular basename but without the extension. If
it doesn’t, it prints as though the second argument were omitted.

Thus:

dal@linux6:~/notes$ dirname /cas/staff/dal/c220/pride.txt

/cas/staff/dal/c220

dal@linux6:~/notes$ basename /cas/staff/dal/c220/pride.txt

pride.txt

dal@linux6:~/notes$ basename /cas/staff/dal/c220/pride.txt .txt

pride

dal@linux6:~/notes$ basename /cas/staff/dal/c220/pride.txt .cpp

pride.txt

dal@linux6:~/notes$

4.4 Recursive Calls on bash

One of the many commands you can call from bash (or any other shell) is
bash itself. There are many reasons for doing so; the most common is what
happens “behind the scenes” when you invoke a shell script (Section 5 on
page 41). However, you may wish to do so explicitly if you are playing
around with shell state (such as by changing the contents of important shell
variables) and want to be able to easily revert to the original values. The
value of $SHLVL tells you how many levels deep in shell calls you are.

When you call a shell recursively, you can quit and get back to the shell
that invoked it via the exit command. Exiting from the top-level shell (cre-
ated by logging in) does a logout.

A recursive shell inherits several things from the shell that calls it, in-
cluding the current working directory and the umask (Section 3.3 on page 17).
It also inherits some of the shell variables: those in “the environment.” You
add a variable to the environment with the export built-in command:

export MYNAME

adds MYNAME to the environment:

dal@linux3:~$ echo $SHLVL

1
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dal@linux3:~$ MYNAME="David Alex Lamb"

dal@linux3:~$ echo $MYNAME

David Alex Lamb

dal@linux3:~$ bash

dal@linux3:~$ echo $SHLVL

2

dal@linux3:~$ echo $MYNAME

dal@linux3:~$ exit

exit

dal@linux3:~$ export MYNAME

dal@linux3:~$ bash

dal@linux3:~$ echo $MYNAME

David Alex Lamb

dal@linux3:~$

You can find the values of all environment variables with the printenv com-
mand.

Recursive shells don’t inherit aliases (Section 4.5 on page 37) or shell op-
tions(Section 4.2 on page 30), so you need to put them in your initialization
script, .bashrc (Section 5 on page 43).

4.5 Finding the Command†
If your command is a full path name (with slashes), there is no ambiguity
about where bash looks to find it: it simply follows the path, and, if the file
it finds has execute permission (x), it executes it. If instead the command
is just a name without slashes, bash uses several mechanisms to figure out
what to do.

First, if you are in an interactive shell (one reading commands from the
terminal, not a script), bash looks to see if you have defined an alias with
that name via the alias command. Without arguments, this command lists
the current aliases (in the same format you’d use to define them):18

dal@linux6:~$ alias

alias ll=’ls -l’

alias ls=’ls -F’

alias rm=’rm -i’

18To remove an alias, use the unalias name command.
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dal@linux6:~$

With these aliases, if you are in the poems directory used in previous exam-
ples and type rm w*, bash substitutes the alias to get rm -i w*, then does
wildcard expansion to get

rm -i wall will

and finally executes the revised command line – which, for each of the two
files, asks you to confirm that you wish to delete it.

After aliasing, if the command is still a single word, bash consults the
search path. This is a shell variable named PATH whose value is a string of di-
rectory names separated by colons (:). bash examines each of these directo-
ries in turn, looking for an executable file of the same name as the command.
It substitutes the resulting path name for the command word. Thus given
the path ~/bin:/usr/local/bin:/user/bin and command xx, where there
are a non-executable file /usr/local/bin/xx, an executable /user/bin/xx,
but no file named ~/bin/xx, bash will turn xx arguments into

/usr/bin/xx arguments.
The exact process is

• Break up the value of PATHat the colons into its three components,
~/bin, /usr/local/bin, and /user/bin

• Look for ~/bin/xx; none exists.

• Look for /usr/local/bin/xx; it exists, but isn’t executable.

• Look for /user/bin/xx; it exists and is executable, so use substitute it
for xx on the command line.

The command “which xx” tells you the full pathname that results from this
expansion.

4.6 Running Multiple Programs

When you issue a command to bash that isn’t built in, it creates a separate
process in which to run it. A process has its own section of the computer’s
memory, and Linux keeps its state separate from all other processes. This
means, among other things, that anything that goes wrong during a com-
mand’s execution can’t affect other processes, such as your shell.

There can be more than one program running at once. Each can be in one
of three states: foreground, background, or suspended. Only one is in the
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“foreground,” while the others are either in the “background” or are sus-
pended. The main distinction is that only the foreground program can read
from the terminal; Linux blocks background processes temporarily when
they try to do so. Multiple processes can write to the terminal; their output
gets interleaved in what is likely to be a confusing manner.

When you are running a program, typing control-z will suspend it – tem-
porarily stopping it from running, and return to the shell. For example, you
might be running an editor and need to look up something in a very large
manual page. You could suspend the editor, run the man command, find the
right spot in the middle of the manual, then suspend man and resume the
editor.19 If you needed to consult the manual again, you could suspend the
editor and continue the man command, which would redisplay the manual
at the point you last viewed it.

Each of the programs you start from the shell is called a job. The jobs

command gives you a list of the current jobs. Each job has a number; you
can type %number to continue a suspended job or bring a background job
into the foreground. Alternatively, if the job has a unique prefix you can
type %prefix. For example, if you are running both man and emacs, and sus-
pend both, you would see

dal@linux6:~/notes/poems$ jobs

[1]- Stopped man bash (wd: ~)

[2]+ Stopped emacs

dal@linux6:~/notes/poems$

%1 or %man would continue the man command; %2 or %em would continue the
emacs command. The + means that % by itself would run emacs.

When you suspend a job, you can send it into the background to con-
tinue running with the bg command, which takes % arguments as described
above. You can also start a command in the background by terminating the
command line with an & (ampersand); this can be used to start a server pro-
cess that waits for incoming internet connections, for example, but servers
are beyond the scope of these notes.

To get rid of a job, use the kill command. kill %1 would kill the man

process.20

19In a modern GUI, each program would have its own separate window, both likely
visible at the same time. The Linux mechanisms were designed for an older time, when
users typically had only a small screen without graphics. Even so, it can save on system
resources, and reduce the amount of screen space that you need to keep visible at one time.

20The kill command can also send signals to processes; see Section 13 on page 96.
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Processes other than the shell can themselves start other processes; Sec-
tion 12 on page 87 shows how to do this from C programs. For example, the
man command runs a program called pager to print a screenful of text at a
time. Also, you can run bash (or a different shell) recursively from within
bash. This creates many processes, only some of which are actual jobs. For
example, suppose we run man and emacs as above, then run a second bash

command and suspend it (with the suspend command; control-z doesn’t
suspend a shell). The ps command will show all processes.

dal@linux6:~/notes/poems$ bash

dal@linux6:~/notes/poems$ suspend

[3]+ Stopped bash

dal@linux6:~/notes/poems$ jobs

[1] Stopped man bash (wd: ~)

[2]- Stopped emacs

[3]+ Stopped bash

dal@linux6:~/notes/poems$ ps

PID TTY TIME CMD

11172 pts/2 00:00:01 bash

11742 pts/2 00:00:00 man

11752 pts/2 00:00:00 pager

11974 pts/2 00:00:00 emacs

11992 pts/2 00:00:00 bash

12002 pts/2 00:00:00 ps

dal@linux6:~/notes/poems$

The first bash in the output from ps is the current one; the second is the
suspended one, job 3. man and pager are the processes making up job 1;
the wd beside man bash in the jobs listing shows its working directory. ps is
the command itself; it has terminated by the time we get back to the shell
prompt, but was active when it was discovering what processes to display.

4.7 Order of Command-Line Expansions†
Earlier notes covered many different things the shell does before executing
a command line; this section summarizes the order in which it does so.

• First, the shell splits the command lines into tokens – words and oper-
ators. Quotes (" and ’) group items together into a single token.
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• Brace expansion: The shell turns a token like xx{aa,bb,cc}yy into xxaayy

xxbbyy xxccyy.

• Tilde expansion. This is where ~x/something/ becomes x’s home direc-
tory/something.

• Parameter/variable expansion – the various ${...} expressions described
in previous sections.

• Command substitution – the $(...) construct, which involves running
a sub-command before executing the main one.

• Arithmetic expansion – $((expression )) is evaluated and substituted.

• Process substitution, which is beyond the scope of these notes.

• Word splitting: If the results of parameter expansion, command substi-
tution, and arithmetic expansion did not occur within double quotes,
it is split into words.

• File name expansion – the wildcards *, ?, and [...] described previ-
ously.

• Redirection. The shell sets up redirections and eliminates the corre-
sponding tokens (such as > and associated filenames) from the com-
mand line.

• Execution. The shell runs the command (or commands, if there were
pipes).

Understanding this order is occasionally important.

5 Shell Scripts

Suppose you have a complicated command you need to use repeatedly. For
example, Section 6.2 on page 54 shows an example of combining the find

and grep commands to locate import statements in a collection of subdirec-
tories:

find ~/java/src -name "*.java" -exec grep -nH import "{}" \;
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It is not necessary to understand this example: it is sufficient to notice that
you wouldn’t want to type it more than once. If you wanted avoid mem-
orizing and retyping this command, you could put it in a file called a shell
script. In general, given some complex command, you could create a file
such as findImport in which you would put the two lines

#!/bin/bash

the complicated command

The first of these lines is a comment explained below; the second is the
actual command. You’d then make findImport executable by telling bash:

chmod u+x findImport

Thereafter, when you type ./findImport,21 your current shell would invoke
bash and tell it to take commands from findImport in the current directory,
which would then execute the complicated command on the second line
(and go on to execute any other lines in findImport, if there were any).
After that, the shell running the script finishes and returns to the shell from
which you invoked the script.22

Lines starting with a hash mark (#) are comments. The first line of
findImport, #!/bin/bash, was optional. It tells the shell to run bash and
pass it the contents of the file to execute. The term “scripting” is a general
term for writing “executable text files” – text files meant to be interpreted by
some conventional executable program, of which bash is one example. The
initial two characters #! are part of a general mechanism used by many dif-
ferent shells to tell them what interpreter to run for whatever language the
text file contains. Other possible interpreters include perl and other shells
like ksh.

Scripts can take parameters, which become shell variables while the
script is executing. $0 refers to the command name itself, $1 to the first
parameter, $2 to the second, and so on. Thus if findImport were

#!/bin/bash

find $1 -name "*.java" -exec grep -nH import "{}" \;
then typing

findImport ~/java/src

would have the same effect as the original example.
Normally a script executes in a separate shell process from the one in

21See page 38 about the PATH variable for why the ./ is necessary.
22If you want to ensure this script would execute from whatever other directories you

might cd to, make sure findImport is in some directory on your search path (Section 4.5
on page 38).
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which you invoked it (see Section 4.6 on page 38). Any changes to shell
state that happen within a script have no effect on the original shell. Thus
if you assign to a variable or make an alias within a script, their effects “go
away” when the script finishes. If you want to execute a script within the
current shell, you type

source scriptFileName [ arguments ]

bash uses the same source mechanism to initialize itself. Whenever you
login, bash looks for several files to source, including one under your con-
trol: ~/.bash_profile. Whenever you invoke bash directly as a subshell,
it sources ~/.bashrc. You should examine both these files to see what the
system administrator set up as your default initialization; you can edit them
to change your preferences for how bash should behave.

There are several commands which, while they are legal to type to an
interactive shell, are more common and convenient in scripts. The following
sections discuss several of them.

5.1 Reading From the Command Line

Sometimes instead of (or in addition to) passing a list of arguments to a shell
you want to read some input from the terminal while the script executes.
The command read var reads a line from the standard input and places it
in the variable. With several variables, the first word is placed in the first
variable, the second in the second variable, and so on to the second-last
variable; the rest of the line is placed in the last.

With the flag -p prompt, and if input is coming from a terminal instead of
a file or pipe, the shell first prints the prompt (without a trailing newline).
The flag -s (“silent”) causes it not to echo characters; you would typically
use this to read a password. For example:

#!/bin/bash

some setup code

read -p "Which key? " which rest

read -ps "Password: " pass rest

jarsigner -keystore cryptkey -keypass ${pass} jar1.jar ${which}
jarsigner -keystore cryptkey -keypass ${pass} jar2.jar ${which}

uses the Java jarsigner program to digitally sign two jar files; keys are
kept in an encrypted “key storage” file called cryptkey, which requires a
password to decrypt. The first read asks for which key to use (several can be
stored in the same file). The second asks for the password in “silent” mode
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(suppressing echoing). The last two lines invoke the jar signer. Without
the -keypass option each call to the signer would prompt for the password;
having the script read the password saves duplication.

A specialized form input redirection called a here document, introduced
with double angle brackets <<, lets you enter the contents of a file on a com-
mand line. You follow the brackets with a word; when that word appears
alone at the start of an input line, the shell recognizes it as the end of the in-
put. This mechanism can be used to create short sequences of inputs in for
testing, without having to create and later delete an input file. For example

dal@linux3:~/notes$ sort <<END | uniq

> first line of input

> second line of input

> another line

> END

another line

first line of input

second line of input

dal@linux3:~/notes$

It is more useful in scripts than when typing commands to the shell; it is rea-
sonably common, for example, to write scripts to test and re-text sequences
of commands; here documents keep the test commands and their (presum-
ably short) inputs in a single place.

5.2 if and Conditionals

The formal syntax of the if statement is
if test-commands ; then

commands ;

[ elif test-commands ; then

commands ;]*

[ else

commands ; ]

fi

Unlike Java and C, conditionals in shell scripts don’t use braces to surround
groups of statements; the keywords then, elif (“else if”), else, and fi de-
limit the set of commands to be executed. The [ elif ... ]*, as with
regular expressions (Section 8 on page 60), means any number of repetitions
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of the elif clause. Like Java but unlike Python, the indentation doesn’t
affect the meaning of the program but is very useful for readability.

bash interprets a line-oriented language, which means that almost all
commands end at a newline. The semicolon (;) before thenwas only needed
because then was on the same line as if (and elif).

There are several different kinds of test commands.
The basic boolean element in the shell is the exit status of the previous

bash command. Every command returns a numerical exit status when it
finishes. Contrary to the meaning in C, a zero exit status means success,
and anything else means failure. Thus you can write

if cmp -s file1 file2; then

echo files are identical

else

echo files are different

fi

The cmp -s command compares two files and prints nothing. It exits with
status 0 if they are the same, and nonzero if they differ. Note the semicolon
before then.

The shell variable $? means the exit status of the most recent command.
The default exit status of a script is that of the last command it executes.
You can specify an explicit exit status with exit number, which means “exit
the script now, returning number as the exit status.”

To distinguish command execution from boolean expressions that the
shell interprets, you put the expression inside double square brackets:23

[[ expression ]]

You must have spaces around the square brackets so the shell will distin-
guish them from parts of the expression. You can combine boolean expres-
sions with parentheses, && (and), || (or), and ! (not). Two common kinds
of expressions are string comparisons and file property tests.

To compare strings you can use use ==, <, and < (but not <= or >=). Thus
to test whether the current directory is the home directory:

if [[ $HOME == $PWD ]]

then

echo I am home

23In old scripts you may see a holdover form with single square brackets; Section 5.3 on
page 47 shows why it is obsolete.
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else

echo I am somewhere else

fi

Since then is on a separate line, there is no need for a semicolon at the end
of the first line.

There are also several boolean tests of the form
-letter filename

that test for properties of files; see Table 3

Table 3: File Property Tests

-e file File exists
-f file File exists and is a regular file
-d file File exists and is a directory
-h file File exists and is a symbolic link
-r file File exists and is readable
-w file File exists and is writable
-x file File exists and is executable
file1 -nt file2 File1 exists and is newer than

file2, or file2 doesn’t exist

You can evaluate arithmetic expressions inside ((...)) (double paren-
theses). The exit status is zero (successful) if the expression yields a non-zero
number. Thus ((5+7)) evaluates to 12, and

if ((5+7)); then echo nonzero; else echo zero; fi

executes the echo nonzero command after then. You can make numerical
comparisons inside double-parentheses; these allow <= and >= as well as <,
>, and !=.

You can also write assignments (=) inside double parentheses (which, of
course, means you need to be very careful about distinguishing = from ==).
The difference between var=expression inside double-parentheses and out-
side them is that, inside, the expression is taken as numerical, and outside
is taken as a string. Thus:

dal@linux6:~$ X=5+2

dal@linux6:~$ ((Y=5+2))

dal@linux6:~$ echo $X ’!=’ $Y
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5+2 != 7

dal@linux6:~$

5.3 Aside: Single Square Brackets†
There is an older form of boolean expression that uses single brackets in-
stead of double. It behaved slightly differently: I/O redirection happened
inside them, whereas with double square brackets the redirection opera-
tors < and > are interpreted as comparison operators. Figure 12 shows two
scripts that differ only in bracketing. The double square bracket case pro-
duces the expected “no” response. The single square bracket case produces
the unexpected “yes” response and has the side effect of creating a file called
Downsview. You may find some equality and inequality comparisons inside
single square brackets in older bash scripts.

5.4 Looping

The two looping constructs are while and for. The syntax of while is:
while test-commands ; do commands ; done

As with the if command, you can omit the semicolons if you put do and
done on separate lines.

The syntax of for is
for name [ in words ...]; do commands ; done

The words can be any sequence of items separated by spaces; the commands
get executed once for each word in the sequence; in the body of the loop,
$name refers to the current word. For example:

• for X in *; do echo $X; done

echoes the names of all the files in the current directory.

• The token $* expands to the list of parameters, separated by spaces,
so

for PARAM in $*; do echo $PARAM; done

echoes all the parameters of the current script, one per line.

• for VAL in 3 5 9; ...

performs commands for the values 3, 5, and 9.
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Figure 12: Single Versus Double Square Brackets

Double and Single Bracket Scripts
#!/bin/bash

# doubleBracket.sh

X=Calgary

if [[ $X > Downsview ]]

then

echo yes

else

echo no

fi

#!/bin/bash

X=Calgary

if [[ $X > Downsview ]]

then

echo yes

else

echo no

fi

#!/bin/bash

# singleBracket.sh

X=Calgary

if [ $X > Downsview ]

then

echo yes

else

echo no

fi

Result of executing the two scripts

dal@linux3: /notes$ ls D*

ls: cannot access D*: No such file or directory

dal@linux3: /notes$ ./doubleBracket.sh

no

dal@linux3: /notes$ ls D*

ls: cannot access D*: No such file or directory

dal@linux3: /notes$ ./singleBracket.sh

yes

dal@linux3: /notes$ ls D*

Downsview

dal@linux3: /notes$
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• for FILE in a* *.txt; ...

performs commands for all the file names starting with a or ending in
.txt; as usual for combining multiple wildcards in a command line,
file names of the form a*.txt will occur twice.

If you omit the words the default is $*, the list of all the command arguments
(as used in the second example).

If you want to iterate over a sequence of numbers, you can combine the
seq command, which prints such a sequence, with the $(...) construct for
command substitution (Section 4.3 on page 34).

for X in $(seq 1 10)

do

echo $X

done

prints the numbers from 1 to 10, while

for X in $(seq 1 2 10)

do

echo $X

done

prints the odd numbers from 1 to 9 inclusive.
Sometimes one wants to deal with multiple arguments at a time, then

advance to the next group of arguments. A primary example is with flags
of the form -flag word . The shift n command was meant for this situa-
tion. It “shifts” parameters left by n. For example, if there were originally
six parameters, then after shift 2, $1 takes on the old value of $3, $2 the
old value of $4, parameters $5 and $6 are “unset,” and $# (the number of
parameters) becomes 4. Given the script

#!/bin/bash

while (($#>0)); do

if (($#>=2)); then

echo "Next pair: " $1 $2

shift 2

else

echo "Singleton: " $1

exit

fi

done
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in file pairs, the results of a call on ./pairs with five arguments would be:

dal@linux6:~/notes$ ./pairs p1 p2 p3 p4 p5

Next pair: p1 p2

Next pair: p3 p4

Singleton: p5

dal@linux6:~/notes$

5.5 Advanced Shell Variables

We have seen that $X and ${X} expand to the value of shell variable X, $n
to the nth parameter to the script, $* to the list of parameters, and $# to the
number of parameters.

There are several other variants using $:

• ${var:-alt} expands to the contents of var if it has a value, but to alt

if var is unset or an empty string.

dal@linux6:~/notes$ X=hello

dal@linux6:~/notes$ echo ${X:-bye}
hello

dal@linux6:~/notes$ unset X

dal@linux6:~/notes$ echo ${X:-bye}
bye

dal@linux6:~/notes$

• ${var:offset:length} expands to a substring of the given length start-
ing at the given offset (zero origin). Omitting the length or giving a
length that would go beyond the end of the string goes to the end of
the string instead.

dal@linux6:~/notes$ X=SomeString

dal@linux6:~/notes$ echo ${X:1:4}
omeS

dal@linux6:~/notes$ echo ${X:5}
tring

dal@linux6:~/notes$ echo ${X:5:15}
tring

dal@linux6:~/notes$
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• ${#var} is the length of the contents of var.

dal@linux6:~/notes$ echo $X ${#X}
SomeString 10

dal@linux6:~/notes$

• ${var/pattern/string} is the value of var with the first match of
pattern replaced by string.

dal@linux6:~/notes$ echo ${X/S/Z}
ZomeString

dal@linux6:~/notes$

The pattern can contain wild cards as with file names.

dal@linux6:~/notes$ echo ${X/o*S/Z}
SZtring

dal@linux6:~/notes$

• ${var//pattern/string} is the value of varwith all matches of pattern
replaced by string.

dal@linux6:~/notes$ echo ${X//S/ZZ}
ZZomeZZtring

dal@linux6:~/notes$

6 find: Finding Files

Suppose you are looking for a Java program with particular string (such as
Tree) in the middle of its name. If you knew what directory it was in, you
could type

ls *Tree*.java

to find its exact name. However, if you had several packages, the file could
be in one of several different directories (since the Java language makes use
of the Linux directory tree structure to represent its package hierarchy). If
you weren’t sure which directory to look in, you’d have to issue several ls
commands, or a single command with several arguments, one per level in
the hierarchy. For example,
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ls *Tree*.java */*Tree*.java */*/*Tree*.java

IF there were another level in the directory tree, this command would miss
it.

The find command lets you specify this search more concisely:
find . -name "*Tree*.java"

You can think of the general form of the command as
find directories [ tests ] [ actions ]

Each test and action starts with a multi-character keyword preceded with a
hyphen (-). The tests govern which files find deals with; -name is one ex-
ample. The directories is a list of directories in which to search; if omitted, it
defaults to the current directory (.). find stops looking for directory names
after the first occurrence of - after the first directory name. find starts in
each of these directories in turn, applies the tests, performs the actions on
any files that pass the tests, then repeats for each subdirectory (recursively,
to the bottom of the directory tree). By default (with no actions) it prints the
names of any files that pass its tests.

Technically, the general form of the command is:
find directories [ predicates ]

Actions are just predicates with side effects; such “predicates” usually eval-
uate to true.

The most common predicates are

• -name pattern is true for file names matching the pattern. If the pat-
tern contains the * and ? wildcards, it must be quoted to protect the
wildcards from expansion by the shell.

• -iname pattern ignores case in matching the pattern. Two major uses
of this are finding file names for which you aren’t sure of the capital-
ization (such as Java class names), and finding .html and other files
accessible from the World-Wide Web (which Internet conventions al-
low to have any possible capitalization).

• -type letter finds specific types of files. -type f finds regular files;
-type d finds directories; -type l finds symbolic links.24

You can combine predicates; all must be true. Thus
find ~/java/src -type d -name "test*"

finds all subdirectories of ~/java/src whose names start with test.
The most common actions are

24There is no letter for hard links, since those are indistinguishable from regular files.
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• -print echoes the file name to standard output; this is so common that
it is the default.

• -delete deletes the file without confirmation. One reasonably safe
use for this is

find someDir -name "*~" -delete

which deletes all Emacs backup files in someDir and its subdirectories.

6.1 Predicates About File Properties

The following are moderately common searches based on specific proper-
ties of files, such as size and access and modification times (Section 3 on
page 8). Specific numbers are just examples and can be replaced by any
other integers.

• Find all files modified less than a day ago.
find . -mtime -1

A +1 instead of -1 would mean “more than one day ago” and no plus
or minus would mean “one day ago.”25

• Find all files modified in the last hour and a half:
find . -mmin -90

-mtime uses days; -mmin uses minutes. -mmin interprets its argument
in the same way as -mtime: + for “more than,” - for “less than,” and
nothing for “exactly” (after rounding).

• Find all “large” files, taken arbitrarily as meaning those bigger than
two megabytes:

find . -size +2M

The sign and its absence have the same meanings as with -mtime

and -mmin.26 The final letter can be c for bytes, k for kilobytes, M for
megabytes, and G for gigabytes. Eventually someone might add T for
terabytes, but as of this writing that hasn’t happened.

Other file property predicates include

25The four predicates -mtime, -mmin, -atime, and -amin round times down. Thus -mtime
1 actually means from 1.0 to 1.999999. . . days ago.

26Contrasting with -mtime and other time-related predicates, -size rounds its argument
up to the nearest multiple of its resolution.
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• -atime and -amin, similar to -mtime and -mmin but for access time (the
last time the file was opened for reading).

• -perm octal for all files with the given exact permission. When pre-
ceded by a - it means to check only the bits in the file permission that
correspond to 1 bits in the octal number. You can use this to, for ex-
ample, find files executable by the owner:

find . -perm -100

There is a more complex version that uses the same symbolic syntax as
chmod, where you can turn on and off specific bits using mnemonics to
represent read, write, and execute permissions for the owner, group,
and other segments.

• -newer file, all files modified later than the given file. This might be
used for some form of incremental file backup.

• -follow is always true; it causes find to follow symbolic links to di-
rectories, detecting cycles to prevent infinite loops.

6.2 The -exec Predicate†
If one of find’s built-in predicates doesn’t do what you want, you can use
the -exec predicate to execute an arbitrary command. The two forms are

-exec command arguments "{}" arguments ";"

-exec command arguments "{}" +

The first form is more common. It executes the command with the given
arguments, replacing {} with the current file name. The ";" (an escaped
semicolon) ends the command to be executed. Thus

find ~/java/src -name "*.java" -exec grep -nH import "{}" \;
finds all .java files in a particular Java source directory and its subdirecto-
ries, running grep -nH import file on each file it finds.27 The -exec predi-
cate returns true if the command succeeds (return code 0) and false other-
wise.

The second form, ending with +, is for efficiency. It causes find to pass
as many matched filenames as possible to the command, rather than exe-
cuting the command once for each filename. You can’t pass any arguments
between {} and ; because of the way find simply appends file names to the
command line.

27See the grep command in Section 7 on page 57.
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Since -exec is a predicate, it is possible to use several in the same find

command. The later ones will only execute if the earlier ones succeed. This
is the best way to simulate the && operator of Java, C, and C++. However, if
you want to do something complex with the command, it may be simpler
to write a shell script (Section 5 on page 41) taking one or more filename
arguments.
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Part II

Textual Pattern Matching
Several Linux tools include facilities for matching patterns in strings. These
notes cover three of them, in increasing order of functionality:

• grep (Section 7 on page 57), which finds lines in text files.

• sed (stream editor, Section 9 on page 65), which finds substrings within
lines and replaces them with other strings.

• awk (Section 10 on page 71), a C-like programming language with spe-
cial facilities for matching patterns in arbitrary strings.

All use regular expressions (Section 8 on page 60) for pattern matching.
We first introduce grep, the simplest of the three to explain, then cover

the syntax of regular expressions, and finally describe sed and awk.
This part of the notes assumes you have mastered basic Linux operation

from earlier notes (or elsewhere), and that you are comfortable experiment-
ing with program features to explore the details of how something works.
In particular, you should be familiar with.

• The hierarchical file system.

• Basic use of the bash shell, including standard input, standard output
and pipes (| operator).

• The way of describing shell command invocation:
command [ flags ] filename(s)

where the square brackets indicate optional elements and the flags
begin with hyphens (-).

• Wildcards (* and ?) in file names on shell command lines.

• The use of a escapes (\ prefix) or quotes (" and ’) to “turn off” the
special meaning of a character like *.
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7 grep: Finding Strings in Files

The find command (Section 6 on page 51) searches for files based on its
properties: name, type, size, modification date, and so on. Sometimes one
wants to search based on content; that is the main purpose of grep.

To search files for lines matching a pattern, invoke
grep [ flags ] pattern filenames

For example,
grep -nH "import java.util" *.java

finds all lines that import items from package java.util in all Java files in
the current directory.28 If no such lines exist, this will produce no output
(the typical convention with Linux tools). In a Java package directory, it
would produce output such as

DynamicStringLocalizer.java:3:import java.util.ArrayList;

DynamicStringLocalizer.java:4:import java.util.Iterator;

DynamicStringLocalizer.java:5:import java.util.List;

ItemLocalizer.java:3:import java.util.Iterator;

LocaleEvent.java:3:import java.util.Locale;

Localizer.java:3:import java.util.ArrayList;

Localizer.java:4:import java.util.Iterator;

Localizer.java:5:import java.util.List;

Localizer.java:6:import java.util.Locale;

Localizer.java:7:import java.util.ResourceBundle;

RecordLocalizer.java:3:import java.util.ArrayList;

RecordLocalizer.java:4:import java.util.Iterator;

StringLocalizer.java:3:import java.util.ArrayList;

StringLocalizer.java:4:import java.util.HashMap;

StringLocalizer.java:5:import java.util.Iterator;

StringLocalizer.java:6:import java.util.List;

StringLocalizer.java:7:import java.util.Map;

Each line of the output corresponds to a single line of some input file, pre-
ceded by the name of the file and the line number (1-origin) within the file.
This convention is reasonably widespread in Linux, and is often used by
compilers. Many programming environments such as Eclipse and editors
like Emacs have some way to run a program like grep, collect their output,
scan the output for each file-name-and-line-number pair, and use them to

28For a more flexible version of this pattern, see Section 8.2 on page 63.
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position a program editor at the corresponding line in the file.

7.1 Command Line Options

There are several variants of the basic output:

• The -o flag shows just the parts of the line that match the pattern,
instead of the whole line.

• The -v flag prints lines that don’t match instead of those that do.

• the -w flag matches only “words” – sequences of letters, numbers, and
underscores (_) surrounded by line boundaries or other characters.

• If you supplied a single file name on the command line, grep by de-
fault omits the filename (and first :) from the output lines.

• With the -h flag, it never shows file names.

• With the-H flag it always shows file names. Before this flag was added,
Linux users often supplied /dev/null as an extra file name argument,
so you may see this usage in old shell scripts or documentation.

• With the -l (letter l) flag, it shows only the file names and not the lines
(or their line numbers, even with the -n flag).

• With the -n flag, it includes line numbers as in the example. By default
it omits line numbers.

• Using a number as a flag (such as -2) shows that number of lines of
context before and after the line that matches.

Omitting file names and line numbers can occasionally be useful. For
example, to find the names of all packages imported into the current direc-
tory’s Java programs, you might say

grep -h "import" *.java | sort | uniq

To copy all poems containing the word “had” to directory backup:
cp $( grep -liw had poems/* ) backup

The match is case-sensitive, which is appropriate for a case-sensitive lan-
guage like C or Java. In natural language text, you might want to ignore
case.

grep -i had *
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finds all lines with the text had somewhere in the line, with any mix of cases
(and anywhere within a word!). Thus it would find had, Had, HAd, but also
shade and Hades. In a directory with several poems, it might find:

birches:You’d think the inner dome of heaven had fallen.

gentle:Because their words had forked no lightning they

mary:Mary had a little lamb,

mary:Mary had a little lamb

road:Had worn them really about the same,

road:In leaves no step had trodden black.

stop:And I had put away

summer:Nor shall Death brag thou wander’st in his shade,

wall:Not of woods only and the shade of trees.

Note the two lines each from files mary and road, and the match for shade in
summer and wall. To limit it to entire words matching had, add the -w flag.

As with many Linux programs, if you don’t pass any file names grep

matches the standard input (which counts as a single input file, and thus
prints no file names or line numbers if you omit the relevant flags).

history | grep -w cd

finds all “change directory” commands in the recent bash command his-
tory; this can be useful if you have switched to many different directories
with long path names and want to avoid retyping the correct one (by using
history substitution, Section 4.3 on page 33).

If you want to find several patterns at once, you can put them in a file,
separated by newline characters, and use the -f flag, followed by the file
name. Thus to find all occurrences of several literary characters in several
text files, put the names

Ron

Hermione

Harry

Hagrid

in file harryPotter and invoke
grep -nH -f harryPotter *.txt

7.2 Caveat: Selecting a “Matcher”

grep has several different methods for matching patterns. Many punctua-
tion characters such as .*+()[]|{}^$ have special meaning to grep: they
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allow for more complex patterns called regular expressions, described in the
next section. Historically, there have been several variants of regular ex-
pressions; to force the use of the version described here, use the -E flag.29

Since by default grep matches regular expressions, if you want to just match
these “special characters” as strings you can force it to treat them as ordi-
nary characters by passing the -F flag.

For example, the . (period) character in a regular expression matches
any character, so

grep -wE sear.h *.c

searches all C source files for the sear library’s header file sear.h, but also
finds ordinary word search.

grep -wF sear.h *.c

finds all occurrences of the exact string sear.h

The separate fgrep command is equivalent to grep -F.
The default pattern matcher (also selected by the -G flag) omits several

of the features described in Section 8 or requires escape sequences (\) to
force some punctuation to be interpreted as pattern operators. Use the -E

flag!

8 Regular Expressions

Many Linux programs allow string pattern matching more complex than
that of shell wildcards, and use regular expressions for constructing patterns.
In particular, these notes describe grep (Section 7 on page 57), sed (Section 9
on page 65), and awk (Section 10 on page 71). Other Linux programs also
use regular expressions; for example, lex generates lexical analyzers for
compilers from regular expressions describing lexemes like identifiers and
numbers. C has a regular expression library via

#include <regexp.h>

Java has one via
import java.util.regex

All examples of regular expressions in this section assume you use the
-E flag for grep and equivalent flags for other programs such as sed.

29Before grep had the -E flag, people used the separate egrep command; it is the same
as invoking grep -E.
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Regular expressions in Linux are extensions of the language of the same
name from automata theory: type 0 Chomsky grammars, which are equiv-
alent to finite state machines. In fact some implementations of regular ex-
pressions translate them into a compact state machine form. These notes do
not assume you understand grammars or state machines; they are covered
in courses such as CISC 223: Software Specifications.30

8.1 Minimal Regular Expressions

We first introduce the Linux regular expressions that correspond directly to
those from automata theory:

• Normal characters (letters, digits, most punctuation) match themselves.

• A sequence of regular expressions re1 . . . ren (concatenation) matches
the first regular expression, followed by the second starting wherever
the first finished, and so on to the last regular expression.

• The sequence re* (repetition) matches any number of occurrences of
regular expression re, including zero. Thus ab*cmatches ac, abc, abbc,
abbbc, and so on.

• re+ matches one or more occurrences. Thus ab+c matches abc, abbc,
and so on, but not ac.

• The sequence (re) (grouping) matches the same thing as re, but treats
it as a single unit. This allows you to use the other operators on
complex regular expressions, not just single characters. The pattern
(abc)+ represents one or more occurrences (concatenations) of the se-
quence abc. Thus it matches abc, abcabc, abcabcabc, and so on. With-
out the parentheses it would represent ab followed by one or more
occurrences of c: abc, abcc, abccc, and so on.

• The expression re1|re2 (alternation) means either regular expression
re1 or re2 (but not both). Thus a(b|c)d matches the two strings abd

and acd.

The precedence of the operators from highest to lowest is grouping, fol-
lowed by repetition, followed by concatenation, followed by alternation.
Thus

30http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-223.html
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ab(c|d)|def*

means “either ab(c|d) or def*” where the former means “ab followed by
either c or d” and the latter means “de followed by any number of fs.” Thus
abc, abd, and deffff all match, but abddef and defdef do not. The pattern
does match the last three characters of abddef, plus the first three and last
three of defdef, but not the whole strings.

Both binary operators (| and concatenation) are associative, so ((a|b)|c)

means the same thing as (a|(b|c)); thus the inner parentheses can be omit-
ted, yielding (a|b|c).

8.2 Simple Extensions

Linux regular expressions have a few extensions that significantly reduce
how much one has to type.

• The character . (period) matches any character (except newline, \n).
To match a period, use \. (as you should expect). It is equivalent to
(c1|...|cn) for (almost) every symbol ci in the ASCII character set.
Thus a..b matches any four characters starting with an a and ending
with a b.

• The sequence x? matches an optional x: zero or one occurrences.31 It
is equivalent to (x|), where the absence of anything after the | means
the empty string.

• A few “escape sequences” match specific characters; the most com-
mon are \t to match a tab character, and \ followed by a character
such as * or + or ? that has a special meaning.

• The sequence
[ sequence of characters ]

matches a single occurrence of any of the listed characters – as usual,
aside from a few special characters like - (minus sign or hyphen). It
corresponds to an expression with the same set of characters separated
by |. Thus [abc] is equivalent to (a|b|c), and [01234567] matches

31There is a syntax for specifying between n and m occurrences, described in Section 8.3
on page 64. Any realistic example would be especially horrendous to specify without such
a special syntax.
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any octal digit. Within [] the period matches itself, not any charac-
ter; in fact most characters with special meanings outside [] match
themselves.

• It is so common to want to represent a range of characters within []

that there is a special syntax: a-z matches any character in the ASCII
character set between lower-case letters a and z, inclusive. If you want
to include a hyphen in the set of matched characters, you can either
quote it with a \ as usual, or make it the first character after the open-
ing [.

Normally, Linux programs interpret regular expressions as matching a
pattern anywhere in a line. Two special characters are “anchors”: they en-
sure the pattern matches only at the start or end of a line. ^ (caret) matches
the start of the line; $ (dollar sign) matches the end of the line. Technically
they “match the empty string” at those positions; they don’t match the first
or last character of the line. Thus

grep -E ’^[ \t]*$’ *.c

finds all blank lines in all C source files in the current directory.
\< and \> are like ^ and $: they anchor a pattern (“match the empty

string”) at the beginning and end of a word, instead of the beginning and
end of a line. Thus the two commands

grep -wi fred *.txt

grep -Ei ’\<fred\>’ *.txt

both find all examples of the word Fred (ignoring case distinctions) and
omit longer words such as Frederick and Alfredo. This use of \ is the in-
verse of the usual one: it means “turn on the special meaning of \< and \>”
instead of turning it off.

Examples of combining these features include:

• Matching a typical identifier in a programming language:
[A-Za-z][0-9a-zA-Z ]*

This means any ASCII alphabetic character, followed by any number
of occurrences of alphabetical, numerical, and underscore characters.

• To ignore extra white space in the Java import search of page 57:
^[ \t]*import[ \t]+java.util

Aside: The shell wildcards * and ? correspond to regular expressions .*
and .? respectively.
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8.3 Additional Regular Expressions†
The regular expressions of Sections 8.1 on page 61 and 8.2 on page 62 suffice
for the most common usages of Linux tools. Here are some features used
less frequently.

The expression x{n,m} matches n through m occurrences of x. Thus a
FORTRAN I identifier, which had to be at most six characters long, would
be [A-Za-z][A-Za-z0-9]{0,5} (an alphabetic, followed by zero to five al-
phanumerics). Omitting ,m matches exactly n occurrences. Omitting just m
(and leaving the comma) matches n or more. Thus x+ is the same as x{1,}.

The expression [^abc] matches any character except abc. This means
that ^ has two different meanings:

• Inside square brackets, it means to complement the set of characters
matched; the pattern matches everything except the listed characters.

• Outside square brackets, it anchors the pattern at the start of the input
line.

Thus the command

grep -nE ’^[^#!]’ *

shows all lines starting with (first ^, at the start of the pattern) some character
other than # or ! (second ^, inside the square brackets).

The patterns [0-9] and [A-Za-z] are so common that they have their
own special notation: within square brackets, [:digit:] is equivalent to
the first and [:alpha:] to the second; [:alnum:] matches both. Thus an
ASCII identifier is

[[:alpha:]][[:alnum:]]*

Note the doubled brackets. In a programming language that allowed a dol-
lar sign or an underscore in an identifier, other than in the first position, one
would write

[[:alpha:]][$ [:alnum:]]*

To match just letters and underscores, use [:word:].
In fact these bracket expressions are more general: they match any letters

or digits of the “current locale.” Thus in a Russian-locale Linux installation,
[:alpha:] would mean a Cyrillic letter. Additional bracket expressions
include:

• [:lower:] and [:upper:] – lower and upper case letters, respectively.
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• [:punct:] – punctuation such as !@#^&*(){}[];:’’’<>?+-=_.

• [:ascii:] – any ASCII character. [:print:] represents “printable”
characters in the range 0x20-0x7E, while [:cntrl:] is the complemen-
tary set of ASCII “control characters” 0x00-0x1E and 0x7F.

• [:blank:] – space and tab. [:space:] represents any whitespace
character, including line breaks.

• [:xdigit:] – any hexadecimal digit

Finally, one extension to regular expressions takes them beyond what
a theoretician would mean by that term (Chomsky type 0 grammars) and
allow some forms of context-sensitive pattern matching. \n, where n is a
digit between 1 and 9 inclusive, matches the exact text matched by the nth

group from the beginning of the pattern. Thus ([ab])c\1 matches aca and
bcb but not acb or bca. ([[:digit:]])\1 matches a pair of identical dig-
its. Back-references like this are especially useful to define replacements in
editors such as sed (Section 9).

Group numbers are defined starting with the left parenthesis of the group.
Thus in nested groups such as ab(cd(ef)g)(hi):

• \1 is cdefg

• \2 is ef

• \3 is hi

9 sed: Simple Editing of Text Streams

sed (stream editor) reads a sequence of files (or the standard input) and
produces an edited output stream. The two main forms are

sed -r -e ’command ’ file(s)

sed -r -f scriptFile file(s)

The former executes the given command for each line of each file, writ-
ing the result to standard output. The second interprets the script file as a
program (according to the loop described in Section 9.1) and executes that
program for each line of each file. The -r flag tells sed to use the extended
regular expression syntax described in Section 8; you should always use it.

A simple example is
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sed -r -e ’s/cat/dog/’ someFile

This “substitute” command (s) causes sed to output an edited copy of someFile
where the first occurrence of cat on each line is replaced by dog, even in the
middle of a word. The line

The Alcatraz catalog discusses cats.

becomes
The Aldograz catalog discusses cats.

To make the s command apply to all occurrences of cat on a line, append
the g flag:

sed -r -e ’s/cat/dog/g’ someFile

gives
The Aldograz dogalog discusses dogs.

To make it change the nth occurrence (if it exists), append a number:
sed -r -e ’s/cat/dog/3’ someFile

changes the the 3rd occurrence, giving:
The Alcatraz catalog discusses dogs.

A command can be preceded by one or two “addresses” governing which
lines of the file it applies to. An address can be a specific line number or a
regular expression. Addresses let you select a subset of lines on which to
apply the command. For example:

• Suppose you know a file starts with five lines of “boilerplate” text
whose content you know well, where the year 2012 needs to be up-
dated to 2013:

sed -re ’1,5s/2012/2013/g’ oldFile >newFile

• In some Linux programming languages, comment lines start with #.
To change all occurrences of cat to dog on comment lines you would
say:

sed -r -e ’/^#]/s/cat/dog/g’ someProg >newProg

You would likely invoke these commands in shell scripts or find commands
(Section 6) that apply them to several files.

The most common commands are32

32These are simplified descriptions that applies to basic use of sed. There are some sub-
tleties with their exact meaning, covered in Section 9.2.
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• p – “print” the line (that is, write it explicitly to the output). Normally
this would produce a duplicate line. It is most useful when you use the
-n flag on the command line, which suppresses the default printing of
each input line. You can simulate the command

grep -E pattern file

with
sed -r -n ’/pattern /p’ file

• s/pattern/replacement/flags – find the first occurrence of the pat-
tern on each line and replace it with the given text. The two main flags
are g, which applies the substitution to all occurrences of the pattern
on each line, and p, which prints the line after doing the replacement
(normally used with the -n command line flag).

• d – “delete” the line (that is, don’t write it to the output).

Sometimes an input line can match a regular expression in more than
one way, particularly when you use repetition (+ and *). When such a pat-
tern could match two different strings starting at the same place, sed takes
the longer match. For example, given sed -re "s/a.+b/Z/" and input line
MaxxbxxbN, the pattern could match either axxb or axxbxxb; sed takes the
longer match, yielding an output line MZN. If you want to find out exactly
how such matches behave, you should experiment.

Sometimes you want to make an edit where the replacement contains
pieces of the original pattern match. To do so, in the pattern you use group-
ing to identify the parts that will be copied, and in the replacement you use
back references (Section 8.3 on page 65) to copy them. Thus to swap the first
and second “columns” of a tab-separated table, you could write

s/^([^\t]*)\t([^\t]*)/\2\t\1/
The character & is a special back-reference meaning “the whole string matched
by the entire pattern.” Thus

sed -re ’s/\<cat|dog\>/the &/’

puts the word the and a space before each occurrence of the words cat and
dog.

9.1 sed Scripts

With the -f flag you can supply a file of commands to be executed for each
line of the input. In such a script any lines starting with # are comments.
Regular command lines take the form
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[address [ ,address ]]command

The square brackets mean that the addresses are optional. If the second is
omitted, it is taken to be the same as the first. Addresses are either absolute
line numbers, $ (meaning the file’s last line), or a pattern (a regular expres-
sion). The command line means, roughly, “for all lines of the input between
the first occurrence of the first address and the next occurrence of the second
address, execute the command.”

It is not quite accurate to say that sed commands operate on input lines.
Technically, they operate on a special internal buffer called the “pattern
space.” An oversimplified description of how sed works is: For every input
line,

Read the line into the pattern space.
Execute all commands in order, potentially modifying the pattern space.
Print the pattern space.

Because of the pattern space, an earlier substitute command changes the
context in which later ones are executed. Thus given script file33

s/day/night/g

s/Tuesday/Fri/g

and the input file
Today is Tuesday.

Tomorrow is Wednesday.

the output would be
Tonight is Tuesnight.

Tomorrow is Wednesnight.

With the commands in the reverse order, the output would be
Tonight is Fri.

Tomorrow is Wednesnight.

9.2 Advanced sed†
The main “execution loop” of sed is a little more complex than in the previ-
ous section. 34

1. Start with an empty pattern buffer, considering it to be line number 0.

2. For each command introduce an “active/inactive” flag that governs
whether to execute the command or not. If no address precedes the
command, the flag is always on; otherwise it is initially off.

33I intend to replace or augment this with something more startling if I can think of it.
34***I need to verify some of the finer details of this loop***
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3. Execute any active commands with address 0 (those meant to be exe-
cuted before reading the input).

4. Read the next (or first) line from the file into the pattern space.

5. Examine the next (or first) command line.

6. If it is inactive and has a first address, test if the line matches the ad-
dress. If so, make the command active. If not, go on to the next com-
mand (step 5).

7. If the command has a second address, test if the line matches it.

8. If the command is active, execute it. Commands affect the pattern
space, not the original line.

9. If the second address matched the original line, make the command
inactive.

10. Repeat starting with step 5 if there are more commands.

11. If there are no more commands, and there was no -n switch on the
command line, execute a p command (print the modified pattern space).

12. Repeat starting with step 4 if there are more input lines.

There are several commands in addition to s, p and d. Some of them
only allow zero or one addresses:

• r: Append the contents of a file to the pattern space.
r filename

• a: Append several lines to the pattern space.
a\

line 1 \

· · · \
line n

Each line but the last terminates with a backslash (an “escaped new-
line”).

• i: Insert several lines at the beginning of the pattern space.
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i\

line 1 \

· · · \
line n

• q: Quit the sed script (first printing the pattern space unless the origi-
nal command line had the -n flag).

Some of these commands insert newlines into the pattern space. The substitute
command can also add newlines, and match patterns that cross lines – but
only within the pattern space; you can’t match a pattern across multiple
lines of the input file.

Other commands allow zero, one, or two addresses:

• s, p, and d, which apply to the whole pattern space.

• w filename: write the pattern space to the end of a file, creating it it
necessary.

• {: Execute a group of commands.
{

several commands on separate lines
}

This might be used to apply several substitutions, but limit them to a
region given by one or two addresses.

There is a special flag, !, which you can put between the addresses and
the command. It means to execute the command for all lines that are not in
the address range. Thus

sed -wre ’/^#/!s/cat/dog/g’

changes the word cat to dog except on comment lines (which start with a
hash mark).

There are many more facilities, including labels, conditional branches,
commands that only operate up to the first newline in the pattern space,
and an auxiliary buffer called the “hold space;” consult the man pages or a
reference manual. However, if what you are doing becomes this complex,
you should consider writing an awk script instead (Section 10).
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10 awk: Programmable Editing of Text Streams

awk is a programming language for text processing; it combines the pattern
matching facilities of sed with a C-like programming language. This section
describes GNU awk (gawk). The usual means of invoking it is

gawk [ flags ] -f scriptFile filename(s)

You can also supply a program on the command line instead of a script
file (using the option --source ’program ’), but that is usually a bad idea
unless the command is very simple. Unlike grep and sed, awk always uses
the extended regular expressions of Section 8 on page 60.

awk is a line-oriented language; with few exceptions, most commands
terminate at the end of the line unless you use a single \ as the last character
on the line. Furthermore, it is case-sensitive (like C, Java, and the Linux
file system); two variables with different case are distinct identifiers. Thus
SomeVariable and SOmeVariable are distinct; awk can’t tell if the latter came
from holding down the shift key slightly too long.

There are three kinds of lines in awk:

• Comments, which start with # (anywhere outside of string literals and
regular expressions) and end with newline.

• Action statements, of the form
pattern { action }

where the action is normally a multi-line program, and the pattern is
often a regular expression but can also be other kinds of pattern.

• User-defined functions (Section 10.5 on page 78), of the form
function name ( parameter1, . . . , parametern ) {

statements

}

awk, like sed, is built around a standard loop that reads from an input
stream and executes commands for each input line. Its basic operation is:

• Read a record from the input; normally this is the same as a “line”
(ending with newline) but you can specify a different record separator
(variable RS).

• Split the line into fields at each occurrence of a field separator (variable
FS): normally, a sequence of spaces and tabs is a single separator.
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• For each action statement, in order: if its pattern matches, execute it.

The most common patterns are

• A regular expression delimited by slashes (Section 8 on page 60), which
matches input lines in the expected way.

• The word BEGIN or END (all capitals), which label actions to be done
before reading the first line or after finishing executing commands for
the last line.

• A boolean relational expression, which matches if the expression is
true (non-zero).

10.1 Language Constructs

awk has constructs similar to those of C: expressions, assignments, if/else,
for, while, break (ending the innermost loop), and return (from a func-
tion). There are also several statements concerning input and output (Sec-
tion 10.2 on page 74). Two statements deal directly with the default loop
that reads records from input files and performs actions.

• The next statement reads the next input record and goes back to the
start of the sequence of commands in the script. Thus if you want to
treat lines in the input file beginning with # as comments, you might
include the action

/^#/ { next; }

• nextfile stops processing the current input file, begins reading from
the next, and goes back to the start of the sequence of commands in
the script. Thus given the command line

gawk -f script.awk file1 file2 file3

the first execution of nextfile in script.awk causes the next input
line to come from file2 instead of file1; the second execution switches
to file3, and the fourth executes the END commands and exits.

awk has all the arithmetic and logical operators you’d expect from C (in-
cluding assignment operations like +=), plus ^ for exponentiation. Writing
two expressions separated by a space (that is, with no operator between
them) means string concatenation; most other operations on strings are
built-in functions (Section 10.3 on page 75). The special operator
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string ~pattern

is true if the pattern matches the string; !~ is true if the pattern doesn’t
match. The pattern can be a constant (surrounded by / characters) or a
string expression.

Variables don’t need to be declared; you just assign to them. If you read
from an uninitialized variable, its value is the null string. This is common
in scripting languages; in combination with the case sensitivity of variable
names, this can make it difficult to detect bugs arising from misspelled iden-
tifiers or uninitialized variables.

Variables are not typed. You can assign a string to a variable in one part
of a program and an integer in another. awk implicitly converts between
strings and integers when you use one in a context that expects the other.
Floating point numbers are treated as integers if they represent the exact
value of an integer. Figure 13 shows a short program and its output, illus-
trating assignment of several different types of value to the same variable.

Figure 13: awk Program With Several Value Types
# Ass ign d i f f e r e n t t y p e s o f v a l u e t o a v a r i a b l e .
# $ R e v i s i o n : 0 . 2 $
# $ Id : varTypes . awk , v 0 . 2 2 0 1 3 / 0 8 / 0 6 1 6 : 4 8 : 2 1 dalamb Exp $
BEGIN {

var = 1+1; print var ;
var = var /3; print var ;
var = var ∗ 6 . 0 + 1 . 0 ; print var ;
var = ”a s t r i n g ” var ; print var ;
print 1e7 ;
print 1 e12 ;

}

Output
2

0.666667

5

a string 5

10000000

1e+12

There are many built-in variables; the most commonly used include:

• $i, the ith field ($1 being the first field). $0 means the whole record.

• FS, the string or regular expression used as a field separator on input.
A single space character means any sequence of spaces and tabs.
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• RS, the record separator for input files (newline by default)

• OFS and ORS, the field and record separators when printing to output
files (see print/printf in Section 10.2).

• NR, the number of input lines read so far.

• FILENAME and FNR, the name of the current input tile and the current
record number (normally the current line) within that file.

• NF, the number of fields in the current record.

• RSTART and RLENGTH, used with the match function (Section 10.3 on
page 76).

Arrays are associative, similar to dictionaries in Python or Maps in Java:
you can use any string as an “array index.”

phone["Smith"] = "555-1913";

dial = phone["Jones"];

The boolean operator
expression in array

is true if the array element array [expression ] has been assigned a value.
The for statement has a special form to iterate over all array indices:

for ( variable in array ) statement
Thus, to print a table of phone numbers (sorted in whatever order awk hap-
pened to store the array indices):

for(X in phone) printf "%s\t%s\n",X,phone[X];

If you want to eliminate an index from an array, you use the delete state-
ment:

delete phone["Jones"]

If you leave out the square brackets and the index, it deletes the whole array.

10.2 I/O in awk

Unlike C, the I/O operations in awk are statements rather than functions.
The command
getline [ variable ] [ < file ]

sets the given variable to the next line from the given file; it returns 1 if
successful, 0 for end-of-file, and -1 if there is an error (in which case it sets
built-in variable ERRNO). If the variable is omitted, awk uses $0 this also in-
volves sedding NF and the $i variables. If the file is omitted, awk reads the
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next line from the main input stream (which also sets NR and FNR, and possi-
bly FILENAME) but does not restart executing commands from the beginning.
Thus if you like you can use getline to override the basic awk input/action
loop.

The command
print [ expression1, . . . , expressionn ] [ > file ]

writes the list of expressions to the given file, separated by the value of OFS,
and terminated with the value of ORS. If the expression list is omitted, it
is taken to be $0. printf interprets its first parameter as a format string,
similar to that of the printf function in C.

The first print or printf that writes to a file opens it for writing starting
at the beginning of the file; thereafter they append to the file. Using >>

appends to the file on the first print or printf instead of rewriting it.
Because of the special /dev “device” files within the Linux file system

(Section 3 on page 9), you can print on /dev/stderr to produce error mes-
sages. Thus for example:

if (something bad happened ) {
printf "%s:%s:%s\nbad input\n",

FILENAME, FNR, $0 >"/dev/stderr"

}
prints an error message to the standard error stream; it includes the file
name and line number where the error occurred, and the contents of the
line being examined.

10.3 Built-In Functions

The following are the most commonly used string manipulation functions
built in to awk:

length finds the length of a string.
len = length( [ string ] )

If the string is omitted, it uses $0. In recent versions of gawk, the length of
an array is the number of indices; in older versions, applying length to an
array was illegal.

substr takes a substring of a string expression:
substr( string, index [ , length ] )

returns the substring starting at the given index. The index is 1-origin (that
is, the first character is at index 1, instead of 0 as in C). The result will be of
at most the given length – shorter if there are fewer characters in the string
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than i+length -1. If the length is omitted, the result goes from the given
index to the length of the string.

match finds the position of a regular expression in a string:
position = match(string, regular expression [,array ])

returns the position of the first match of the given regular expression in
the given string, or zero if there is none. It sets RSTART to the index of the
first matched character (the same as the result of the match) and RLENGTH

to the length of the match. If the array argument is given, match assigns
the strings matched by internal groupings – parts of the pattern delimited
by parentheses. array[i] is equivalent to the \i back-reference in regular
expressions and sed substitutions (Section 9 on page 67). Figure 14 shows

Figure 14: Use of match to Remove Context
# Show use o f match , RSTART, and RLENGTH $ R e v i s i o n : 0 . 1 $
# Removes some c o n t e x t around a p a t t e r n .
# $ Id : match . awk , v 0 . 1 2 0 1 3 / 0 8 / 0 6 1 6 : 4 5 : 1 2 dalamb Exp $
BEGIN {

s t r i n g = ” s t a r t marklef t some middle t e x t rightmark end” ;
i f ( match ( s t r i n g , ” l e f t ( . ∗ ) r i g h t ” , p ar t s ) ) {

p r i n t f ”%s%s%s\n” , substr ( s t r i n g , 1 , RSTART−1) ,
p ar t s [ 1 ] , substr ( s t r i n g , RSTART+RLENGTH) ;

}
}

Output
start marksome middle textmark end

how grouping, RSTART, and RLENGTH can be combined to “remove” parts of
a matched string. The output consists of the substring up to the part of the
string matched by the pattern, the “middle” part matched by the first (and
only) grouping, and the substring after the end of the part that matches the
pattern; this eliminates the bracketing substrings left and right.

split splits a string into parts using a regular expression to delimit
fields, and places each part in successive elements of an array.

numParts = split(string, array [, regular expression ] )

It returns the number of fields found, or 0 if the string was empty. The
default regular expression is FS, the field separator.

sub finds the first occurrence of a regular expression in a string variable
and replaces it; this is equivalent to the s command from sed, without the g

flag.
sub(regular expression, replacement string

[ , string variable ])
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If you omit the string variable, it is taken as $0 (the whole record). To change
all occurrences, use gsub, which takes the same parameters.

index returns the 1-origin index of the first occurrence of one string in
another, or zero if there is no match.

index(string1, string2)

finds string2 in string1).
toupper and tolower take a single string parameter and returns a new

string with the alphabetic characters converted to upper or lower case, re-
spectively.

There are also numeric functions, bit-manipulation functions, and inter-
nationalization functions.

10.4 Command-Line Arguments

In addition to the -f scriptfile switch already mentioned, awk has many com-
mand line arguments, only a few of which I describe here.

Sometimes you want to pass arguments to your awk program instead of
to awk itself. One way to do so is to use the -v flag.

gawk -v var =val -f script.awk someFile

sets the given variable to a specific value before awk starts executing the
program in script.awk – even before the BEGIN pattern. Your BEGIN code
can detect whether such variables are null and assign a default value. Thus
given:

BEGIN {
if (linePrefix="") linePrefix = "\t"

}

the command
gawk -v linePrefix="// " -f script.awk someFile

uses double-slash followed by a space as the “line prefix,” whereas
gawk -f script.awk someFile

uses a tab.
Some options are preceded with a double hyphen. For example,
--field-separator pattern

sets the field separator variable FS. The default field separator breaks on
every run of spaces and tabs. If one input file has fields with embedded
spaces you could set FS to a single tab. If another has both spaces and tabs
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within fields, but doesn’t have slashes, you could set the field separator to
/. This particular option also has the single-hyphen form -F pattern .

Some options have both a GNU and a POSIX form; --option is GNU,
while -W option is POSIX.

• --traditional disables gawk extensions to the original UNIX awk.

• --posix disables a few more features to make gawk compatible with
the POSIX standard.

• --lint prints warnings for program lines with unportable constructs.

10.5 User-Defined Functions

A user-defined function has the form:
function name ( variable1, . . . , variablen ) { statements }

A call looks like
name ( expression1, . . . , expressionm )

m can be less than n. Earlier I said that a function definition has a sequence
of parameters, but the actual situation is slightly more subtle. By default all
variables in awk are global, so any function can refer to variables assigned
to by any of the actions in the program. When you call a function, values
of all the variables named in the function definition35 are saved, and re-
stored to their original values when the function returns. Passing too many
arguments is an error, but passing “too few” merely initializes the “miss-
ing” arguments to null. This feature can be used to define local variables.
There is no semantic distinction between local variables and parameters –
the “local variables” are just formal parameters for which no actual param-
eter is passed in the function call. There is a stylistic convention to add extra
spaces or tabs in the function definition between the last parameter and the
first local variable.

Within a function, return value returns to the caller with the given value
as the result; if value is omitted (or if the function “falls off the end” of its
statement list), the return value is undefined.

Figure 15 shows an awk program using a function to define processing
to be done at the end of a collection of records, which must also be done
at the end of the input. It detects the end of a “group” of records when

35These might be called “formal parameters” in conventional programming language
terminology.
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Figure 15: Sample awk Program with User-Defined Function

# G e n e r a t e comma−s e p a r a t e d v a l u e l i s t $ R e v i s i o n : 0 . 1 $
# $ Id : commaValue . awk , v 0 . 1 2 0 1 3 / 0 7 / 2 5 1 9 : 4 8 : 2 4 dalamb Exp $
# Input l i n e s o f t h e form
# l a b e l <tab> v a l u e
# in s o r t e d o r d e r by l a b e l a r e t urn ed i n t o
# l a b e l <tab> va lue1 , . . . valueN
# L i n e s with m i s s i n g l a b e l s a r e i g n o r e d .
BEGIN {

FS = ”\ t ” ;
v a l L i s t = l a s t L a b e l = ”” ;

}
function endGroup ( ) {

i f ( l a s t L a b e l ==”” ) return ;
p r i n t f ”%s\ t%s\n” , l a s t L a b e l , v a l L i s t

}
$1 == ”” { next ; }
$1 != l a s t L a b e l {

endGroup ( ) ;
l a s t L a b e l = $1 ;
v a l L i s t = $2 ;
next ;

}
{ v a l L i s t = v a l L i s t ” , ” $2 ; }
END { endGroup ( ) ; }

Program to detect changes in the first field of a record. endGroup
encapsulates end-of-group processing when a label changes or
when the end of the input is reached.

the value of the first field changes and calls endGroup to print all the values
associated with that label, separated by commas instead of newlines. At
the start of the program, the “last label” is blank, so endGroup does nothing
the first time the label “changes” (from the empty string to an actual label).
At the end of the input (END pattern), the same processing is needed. The
initialization of FS at the start of the program (BEGIN pattern) is needed to
allow embedded spaces in values (or labels, for that matter), but the other
initialization is purely for documentation purposes. endGroup has no local
variables or parameters; all the variables it references are global. Given the
input

someLabel value1

someLabel value0

otherLabel firstVal

otherLabel secondVal

this will be treated as a comment
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otherLabel thirdVal

(where the runs of spaces indicate single tab characters) the script produces
the output

someLabel value1, value0

otherLabel firstVal, secondVal, thirdVal

10.6 Some Longer Examples

Figure 16 shows an awk script that converts a file with many names on a line
to one per line, reversing the order of given names and surnames. Given the
input file

# this is a comment: it will be deleted

Ilke ten Boom

Marjorie Smith:Piet de Vos:Elsa von Braun

Piotr Ivanov:Simon van Dyke:Chen, Xiaoping

the command

gawk -f splitNames.awk splitNames.txt | sort -f >splitNameOut.txt

generates the output file

Chen, Xiaoping

de Vos, Piet

Ivanov, Piotr

Smith, Marjorie

ten Boom, Ilke

van Dyke, Simon

von Braun, Elsa
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Figure 16: awk Script to Reorder Names
# Conver t ” given−name surname ” t o ” surname , g iven−name”
# pay ing a t t e n t i o n t o common mult i−word surnames .
# $ Id : s p l i t N a m e s . awk , v 0 . 1 2 0 1 3 / 0 7 / 3 0 1 6 : 3 8 : 1 1 dalamb Exp $
# Input f i l e c o n s i s t s o f l i n e s o f t h e form
# name1 : . . . : nameN
# $ R e v i s i o n : 0 . 1 $

# Setup
BEGIN {

FS = ” : ” ;
# s p e c i f y name p r e f i x e s in an easy−to−w r i t e form
namePrefixes = ”de/von/van/ten ” ;
numPrefixes = s p l i t ( namePrefixes , parts , ”/” ) ;
# c o n v e r t t o t a b l e form t o use ” in ” o p e r a t o r
for ( i =1 ; i<=numPrefixes ; i ++) {

p r e f i x [ p ar t s [ i ] ] = 1 ;
}

}

# d e l e t e comment l i n e s
/ˆ # / { nex t ; }

# Actua l c o n v e r s i o n
{

for ( i =1 ; i<=NF; i ++) { # f o r e a c h f i e l d
fullname = $ i ;
# i f name a l r e a d y has a comma i t i s in t h e c o r r e c t form
i f ( fullname ˜/ ,/) p r i n t f ”%s\n” , fullname ;
e l s e {

# s p l i t e a c h f u l l name i n t o p a r t s
len = s p l i t ( fullname , parts , ” ” ) ;
surname = p ar t s [ len ] ; # l a s t name
i f ( len >2) {

# c h e c k whe the r 2nd l a s t p a r t i s one o f t h e p r e f i x e s
i f ( p a r t s [ len−1] in p r e f i x ) {

# i f so , c o n s t r u c t t h e p r o p e r surname and
# a r r a n g e t o p r i n t one f e w e r g i v e n names .
len−−;
surname = p ar t s [ len ] ” ” surname ;

}
}
# p r i n t f u l l n a m e s one p e r l i n e
# in f o r m a t ” surname , l i s t o f g i v e n names”
p r i n t f ”%s , ” , surname ;
for ( j =1 ; j<len ; j ++) p r i n t f ” %s ” , pa r t s [ j ] ;
p r i n t f ”\n” ;

} # i f
} # f o r

} # a c t u a l c o n v e r s i o n
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Part III

C Programming for Linux
This portion of the notes describes how to write system-level C programs
under Linux. It currently assumes you are familiar with basic C program-
ming; if you do not already know the language, you should consult the pri-
mary source: The C Programming Language, 2nd edition, by Brian Kernighan
and Dennis Ritchie. You must be able to write C programs using:

• Types, declarations, expressions, pointers, structs, functions;

• The main constructs if/else, for, while, break, return;

• The standard library: string functions, malloc/free, printf, and scanf;

• File I/O: file descriptors, fopen, read, write, fclose, and the use of
errno to indicate errors from system calls;

• Multi-file programs, header files, and the difference between declara-
tions and definitions.

C was designed in the early 1970s at Bell Labs. It was a successor to a
typeless language called B, which was in turn a successor to BCPL36 (Basic
CPL). CPL (Cambridge Programming Language), designed by D.W. Barron
and Christopher Strachey the early 1960s, turned out to be difficult to im-
plement, a major factor leading to BCPL. Strachey was also one of the key
figures in developing denotational semantics, a mathematical means of de-
scribing the meaning of computer programming languages; it is covered in
formal specifications courses such as CISC 465: Foundations of Program-
ming Languages.37

Successors to C include C++ (taught in CISC 320: Fundamentals of Soft-
ware Development),38 and Java (taught in CISC 124: Introduction to Com-
puting Science II).39

36http://en.wikipedia.org/wiki/BCPL
37http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-465.html
38http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-320.html
39http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-124.html
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11 Characteristic Errors

Programming languages typically have “characteristic errors” that program-
mers make – mistakes programmers may be led to make because of the de-
sign of the language or its run-time system. Some of these can be caught by
compilers; for example the -Wall switch in gcc warns about using = instead
of == as the top-level operator in a boolean expression.

Whether these problems are considered design errors by experienced C
programmers is a matter of debate; sometimes the “problem” arises from a
feature that is sometimes useful. For example, allowing = in an expression
permits multiple assignments of the form

a = b = expression

which some people consider more readable than the equivalent
b = expression ; a = b;

Another common error is to forget a break in a switch statement for one of
the cases. However, sometimes the same code was appropriate for multiple
case clauses, so the language permits:

switch(someCharacter) {
case ’C’ :

case ’c’ :

someSetup();
case ’D’ :

case ’d’ :

commonCDcode()
break;

case ’E’ :

case ’e’ :

completelyDifferentCode();
}

This might have been exactly what the programmer meant.
In both cases, language designers disagree about whether the conve-

nience of expression is worth the inconvenience of the characteristic error.

11.1 Basic Errors

Here are some common errors in C programs, the first two of them de-
scribed in more detail previously.

1. Using = (assignment) instead of == (equality test) in boolean expres-
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sions.

2. Forgetting to break out of a switch.

3. Mixing up a character literal (’C’) with a one-character string literal
("C"). The latter is a pointer to a 2-character storage area, the first of
which is a ’C’, and the second of which is a null character.

4. Forgetting that an int divided by an int is another int, not a floating
point number. 1/2 is 0, not 0.5.

5. Forgetting to use function prototypes. Unless you declare the return
type and parameter types of a function, C assumes they are all int.
For example, in the absence of extern double sort(double X), in
the statement double x = sqrt(4.0), the result could be a very large
number (depending on details that vary between C compilers and
across different hardware architectures).40

6. Forgetting to put braces around multi-statement blocks. For example,
if (...)

stmt1;

stmt2;

The indentation suggests to some readers that if the condition is true
both stmt1 and stmt2 will be executed.41 However, stmt2 is always
executed, just as if it were indented:

if (...)

stmt1;

stmt2;

40In excruciating detail:

• the 2.0 will be converted to an int.

• on a 32-bit architecture sqrt will treat the 0x0002, followed by the next 4 bytes, as
a double-precision floating point number which, on a machine with IEEE 754 hard-
ware, will have a 0 exponent field, meaning to multiply the fraction by 2−1023.

• sqrt will compute an answer with exponent twice the size, which will be represented
as though it were a very large 64-bit integer.

• The first 32 bits of the integer, containing the exponent, will be converted to a double.

41This might especially happen to someone whose only previous language is Python,
where indentation is part of the semantics.
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If you want to execute both statements only when the condition is
true, surround them with braces:

if (...) {
stmt1;

stmt2;

}

11.2 Storage Management Errors

In many computer architectures, data storage (stack and heap) is in the same
address space as instructions. It is thus possible to overwrite data in such
a way as to either cause a hardware fault or, worse, allow an external data-
supplying program to introduce a virus.

1. Forgetting to initialize a variable, especially a pointer variable. C does
not automatically initialize variables like Java does; the program will
interpret whatever the variable contents happen to be as if it were a
genuine value of the corresponding type, which could be different the
next time the program is run. In the case of a pointer variable, refer-
ences through it will access nonexistent memory, or overwrite other
data or program code. These errors can be very difficult to find. In
particular, loading a debugger to track down the error, or adding de-
bugging print statements, might result in different contents in mem-
ory. This could cause the bug to disappear, or move where in the code
the error manifests itself – a so-called “heisenbug”, after the Heisen-
berg Uncertainty Principle in quantum physics. An uninitialized in-
teger variable can have the same effect if it is used as an array index,
since accessing an array element involves pointer arithmetic without
bounds checking.

2. Freeing heap storage but continuing to use the pointer to it (a so-called
“dangling pointer”), especially freeing the storage twice. If the free
space is reallocated, two different parts of the program could be mod-
ifying the same region in incompatible ways, and freeing twice could
corrupt the storage allocator’s data structures.

3. Failing to limit processing of a region to its actual size. This can hap-
pen with both arrays (of which strings are a special case) and heap
storage. It is especially a problem with some input/output library
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calls. In particular, gets has no idea how long its string parameter is,
and has no way to limit how long a line it will read.

4. Failure to put a null character (’\0’)at the end of a string. By conven-
tion, strings don’t have an associated length, and null-termination is
the standard way of telling where a string ends. This is a special case
of the previous error.

5. Forgetting that arrays are 0-origin. Given int arr[10], the last ele-
ment of the array is arr[9].

6. Failure to allocate room for a null terminator. An n-character string
requires allocating n+1 bytes. This is a similar to the previous error,
complicated by the special representation of strings.

11.3 Library Function Errors

Several library functions have their own characteristic errors. Storage allo-
cation errors, some of which involve library functions, are covered in the
previous section.

1. Using == instead of strcmp to compare strings.

2. Treating fgetc, getc, and getchar as though they return characters.
They return an int so they can represent the special value EOF, which
is bigger than a char.

3. Passing scalar values to scanf, not pointers to them (via ampersand,
&), or passing a pointer value with the ampersand.

4. Forgetting that scanf of scalars stops when it hits whitespace, poten-
tially leaving extra characters on the line. This is normal when you’re
reading multiple values from a line, but you need to remember when
you think a line should have only one item that there could be more
text. In particular, scanf doesn’t consume the newline at the end of
a line. You may need to write and use a startNextLine procedure to
get to the start of the next input line; it would keep reading characters
until it reaches a newline or end-of-file.

5. Forgetting that some functions (such as system calls) can fail and set
errno as a way of reporting the problem (instead of returning an un-
usual value).
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12 Processes

Section 4.6 on page 38 introduced the idea of a process within the context of
the shell. This section shows what happens at a lower level – what system
library calls are involved, and the details of how to write C programs that
create their own sub-processes.

You have already seen and used processes for foreground/background
jobs, multiple programs with their own windows in a GUI interface, and
multiple users on a single machine. Multiple processes give the illusion of
multiple separate machines, but in reality one processor42 switches rapidly
back and forth between the separate processes.

12.1 What is A Process?

Basically, a process is a means for simulating multiple processors on a single
processor (or simulating a large number of processors on a machine with
fewer). Each process has its own version of:

• an address space – a section of computer memory, including space for its
own executable code, stack (for procedure calls) and heap (for malloc
and free).

• program state – information such as where its next instruction in the
program will come from (the “program counter”).

• system state – data Linux keeps outside the address space where the
program can’t accidentally change it, such as what files are open and
where in the file the next read or write will take place.

A process can’t change any memory or state allocated to a different process,
nor can hardware errors (such as “segmentation faults”) affect any other
process.

Switching between processes – “context switching” – is very slow com-
pared with normal program execution. Table 4 shows typical times for a
typical machine as of this writing, translated to a human-comprehensible
scale.

• Processor cycle is the rate at which a computer performs basic inter-
nal CPU operations; there can be several cycles for a typical assembly
language instruction.

42Or a small collection of tightly-coupled processors on a multi-core machine.

Version 1.6 87



Table 4: Process Timescale

Activity Actual Times Scaled
processor cycle 0.333 ns (3GHz) 1 sec
memory access 50-150 ns 2.5-7.5 min
context switch 3.5 µs 3.4 hr
disk rotational latency 8.3 ms (7200 RPM) 289 day
time slice quantum 100 ms 9.5 yr

Times for computer activities on typical mid-range personal comput-
ers, versus times at a human scale. Human reaction times (the fastest
a human’s nervous system can respond to any stimulus) are on the or-
der of a few hundred milliseconds, roughly a factor of a billion (109)
slower than current computers. All times are rough approximations
based on Internet searches as of July 2013.

• Memory access is the time between the CPU’s request for a word of
dynamic random access memory (DRAM) and the time it arrives.

• Context switch is the time to switch from one Linux process to another.

• Disk rotational latency is the average time the CPU must wait before a
“hard drive” disk rotates to the starting point of a block of informa-
tion (one of several factors involved in time to wait for disk I/O). The
highest-performance disks are about twice as fast.

• Time slice quantum is the typical time Linux runs one process before
switching to another.

Section 4.6 on page 38 described several shell features related to pro-
cesses: that commands run in separate processes; the concepts of foreground,
background, and suspended jobs; and the commands jobs, ps, and kill.

12.2 The Process Manager

The process manager is the part of the Linux kernel that deals with pro-
cesses: creating them, destroying them, and switching from one to another.
It stops a process under several circumstances:
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• The process has finished (such as by making an exit system call). In
this case the manager has several cleanup tasks to perform.

• The process has requested a sleep – an amount of time to wait before
it runs again.

• The process is waiting on something else – such as for another process
to complete, or for input/output.

• A higher-priority process needs to interrupt. The details of this are
beyond the scope of these notes.

• Its running time since its last “stop” exceeds a time limit (the quantum
mentioned in Table 4).

If the computer has multiple processors, usually the manager allocates a
process to each processor.

When one process stops, the manager resumes another one; if there are
no other processes, it runs a special “idle” process.43 When choosing a pro-
cess to run, the kernel considers several factors:

• The process priority, inherited from the user’s priority. Most users
have the same priority, but the root user has a higher one. A process
can voluntarily lower its priority.

• How long the process has been waiting since the last time it ran.

• How much processor time it has taken already.

12.3 Creating a New Process

Every process has a process ID – an integer unique to the process; these are
the numbers you can see in the output from the ps command. Every process
has a unique parent – the process that created it. The “init” process, the first
one created after the system boots, is the ultimate ancestor of all processes;
it is its own parent. The system call

pid t getpid()

from <unistd.h> returns a process’ own ID; the call

43Technically this might be a special lightweight “process” called a “thread.” An idle
process can do anything, from infinitely looping to computing the digits of π – as long as
it never blocks.
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pid t getppid()

returns the parent’s ID. pid t is from <sys/types.h>. The fork system call
creates a new process:44

pid t fork();

This creates a new process identical to the old one, with its own copy of all
the process’ state; there is no shared memory between the two. The only
difference is that the return value is zero when fork returns in the child
process, and the child’s process ID when fork returns in the parent process.
If the parent gets back a negative value, it means that the system was unable
to create a child process.

Figure 17 on page 94 shows a simple program that creates several child
processes and waits for all of them to finish (Section 12.5 discusses waiting
for a child). Running it thrice with zero sleep time produces different output
each time, because the scheduler happens to make different decisions about
which child process to run first.

dal@linux3:~/notes/progs$ ./fork

Create 3 children, sleep 0

I am child 0 9068

I am child 1 9069

Finished child 0 9068 status 0

I am child 2 9070

Finished child 2 9070 status 512

Finished child 1 9069 status 256

dal@linux3:~/notes/progs$ ./fork

Create 3 children, sleep 0

I am child 0 9073

I am child 2 9075

Finished child 0 9073 status 0

I am child 1 9074

Finished child 2 9075 status 2

Finished child 1 9074 status 1

dal@linux3:~/notes/progs$ ./fork

Create 3 children, sleep 0

I am child 1 9087

I am child 2 9088

Finished child 1 9087 status 1

44The name comes from the image of a fork in the road, or the handle of a fork splitting
into several tines.
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Finished child 2 9088 status 2

I am child 0 9086

Finished child 0 9086 status 0

With a positive sleep interval, the order would be fixed, since successive
child processes wait longer before printing their messages.

12.4 Executing a Different Program

This simple form of process creation is useful in limited circumstances –
primarily when there are several processors and some way to break up the
parent’s functionality into several independent steps, one per process. One
way to do something different is to tell the system to load a different pro-
gram to replace the current one; the child process would typically do this,
leaving the parent to continue with whatever it was doing previously.

There are several ways to do this, each involving a system call whose
name starts with exec. One simple version is

int execvp(const char *file, char *const argv[]);

The file parameter is the path name45 of the program to run.46 The argv

parameter becomes the argv passed to the main procedure of the new pro-
gram. It is an array consisting of a the same pathname string as the file

parameter (the value of $0 in a shell script), a list of strings for the “com-
mand line arguments” of the new program, and a null (0) to show the end
of the list. It does not return if it succeeds; instead execution starts with the
main procedure of the new program.47 If it returns, errno indicates what
caused the call to fail.

The arguments are passed unchanged to the new process; no shell is
involved. Thus an exec call does not provide any of the facilities described
in Section 4.7 on page 40: aliases, command line expansions/substitutions,
wildcards, I/O redirection, pipes, or references to shell variables.

Figure 18 on page 95 shows a program that creates a child process, which
in turn uses execvp to run a find command (Section 6 on page 51). It out-
puts:

45“Path name” also includes a simple command name if the directory is in your path –
the same rule as used in the bash shell.

46Or a text file whose first line starts with #!, as described in Section 5 on page 41, in
which case the program’s name follows the #!.

47Technically, the part of the standard C library that invokes the main procedure.
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dal@linux3:~/notes/progs$ ./execvp

Child 9161 invoking find . -name *.c -exec ls -l ;

-rw------- 1 dal student 1024 Jul 22 07:59 ./fork.c

-rw------- 1 dal student 780 Jul 22 08:07 ./execvp.c

-rw------- 1 dal student 1247 Jul 22 08:10 ./sigpause.c

Finished child 9161 status 0

dal@linux3:~/notes/progs$

12.5 Parent/Child Interaction

Sometimes, as when the shell creates a foreground process, the parent has
nothing to do but wait until the child terminates. This is what the wait

system call from <sys/wait.h> is for:
int status;

pid t child pid = wait(&status);

This waits for any of the parent’s children to stop; the status indicates which
of several possibilities caused termination.status is set to the “exit status”
of the child;48 The return value is the process ID of the child that stopped.
If you passed null (0) instead of the address of an int, it means you didn’t
care to know its status.

The slightly more general variant
pid t child pid = waitpid(pid, &status, options);

lets you wait for either a single child (with a positive pid), or all children
(pid = -1), or any child in a particular process group (pid < -1, but process
groups are beyond the scope of these notes). Typical values for options
are 0 to just wait for a child to stop, or the constant WNOHANG to just check
whether the child has finished, without waiting. The return value is either
the process ID of the child, or zero if you use WNOHANG and no child has
exited. If several children have finished, you get the process ID of only one
of them. A call to wait(&status) is equivalent to waitpid(-1,&status,0).

There are two special statuses for child processes:

• An orphan process is one whose parent has finished but which hasn’t
itself finished. This isn’t necessarily a mistake; it’s typical of server
programs, which are meant to run “forever.” Orphan processes be-

48†“Exit status” consists of several parts encoding things like the parameter to exit

and what signal, if any, terminated the process. To get the code from exit, one uses
WEXITCODE(status) as in the example programs.

Version 1.6 92



come children of the special “init” process owned by the “superuser”
mentioned in Section 3.5 on page 19.

• A zombie process is one that has stopped, whose parent hasn’t stopped,
but whose parent isn’t waiting for it. It can be problematic since is
still consuming limited system resources, such as memory space and
a spot in the kernel’s process table.

Normally when the parent terminates the system will clean up all its ter-
minated child processes (leaving the still-running children to become or-
phans), so zombie processes aren’t necessarily a problem for long – except
when the parent is something like a login shell that typically runs for a very
long time and creates very many child processes. To reduce the zombie
problem, the parent gets a SIGCHLD signal (Section 13) when each child ter-
minates.
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Figure 17: Simple Example of fork and wait

/∗ Example o f f o r k and wait , $ R e v i s i o n : 0 . 3 $
$ Id : f o r k . c , v 0 . 3 2 0 1 3 / 0 7 / 2 9 1 6 : 3 4 : 0 8 dalamb Exp $ ∗ /

# include <sys/types . h>
# include <unistd . h>
# include <s t d l i b . h>
# include <s t d i o . h>
# include <sys/wait . h>

# define NUM CHILD 3
# define SLEEP INTERVAL 0

/∗ P r o c e s s i n g f o r t h e i n d e x ’ th c h i l d .
S l e e p s f o r a m u l t i p l e o f t h e g i v e n i n t e r v a l ,
t h en i d e n t i f i e s i t s e l f and e x i t s , r e p o r t i n g
i t s number ∗ /

void c h i l d ( i n t index ) {
unsigned i n t i n t e r v a l = index∗SLEEP INTERVAL ;
s leep ( i n t e r v a l ) ;
p r i n t f ( ” I am c h i l d %d %d\n” , index , getpid ( ) ) ;
e x i t ( index ) ;

} /∗ c h i l d ∗ /

s t a t i c p i d t ch i ldren [NUM CHILD ] ;
/∗ Find t h e c h i l d with t h e g i v e n p r o c e s s ID ∗ /
i n t f indChildIndex ( p i d t c h i l d ) {

i n t i ;
for ( i =0 ; i<NUM CHILD; i ++)

i f ( ch i ldren [ i ] == c h i l d ) return i ;
return −1;

} /∗ f i n d C h i l d I n d e x ∗ /

/∗ Main program . C r e a t e s e v e r a l c h i l d r e n and wa i t
f o r a l l o f them t o f i n i s h ∗ /

i n t main ( ) {
p r i n t f ( ” Create %d chi ldren , s leep %d\n” ,NUM CHILD, SLEEP INTERVAL ) ;
i n t i ;
for ( i =0 ; i<NUM CHILD; i ++) {

p i d t pid = fork ( ) ;
i f ( pid ==0) { /∗ p r o c e s s i n g in c h i l d ∗ /

c h i l d ( i ) ; e x i t (−1) ;
}
/∗ p r o c e s s i n g in p a r e n t ∗ /
ch i ldren [ i ] = pid ;

}
i n t s t a t u s ;
for ( i =0 ; i<NUM CHILD; i ++) {

p i d t c h i l d = wait (& s t a t u s ) ;
p r i n t f ( ” Finished c h i l d %d %d s t a t u s %d\n” ,

f indChildIndex ( c h i l d ) , chi ld , WEXITSTATUS( s t a t u s ) ) ;
}
return 0 ;

} /∗ main ∗ /
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Figure 18: Simple Example of fork and execvp

/∗ Example o f f o r k and execvp , $ R e v i s i o n : 0 . 3 $
$ Id : e x e c v p . c , v 0 . 3 2 0 1 3 / 0 7 / 2 9 1 6 : 3 4 : 0 8 dalamb Exp $ ∗ /

# include <sys/types . h>
# include <unistd . h>
# include <s t d l i b . h>
# include <s t d i o . h>
# include <sys/wait . h>

# define NUM ARGS 9
s t a t i c char ∗args [ ] =
{ ” f ind ” , ” . ” , ”−name” , ” ∗ . c ” ,

”−exec ” , ” l s ” , ”− l ” , ”{}” , ” ; ” ,
NULL } ;

/∗ S e t up and c a l l an e x e c v p . ∗ /
void c h i l d ( ) {

/∗ I d e n t i f y s e l f and show e x e c v p a r g s ∗ /
p r i n t f ( ” Child %d invoking ” , getpid ( ) ) ;
i n t i ;
for ( i =0 ; i<NUM ARGS; i ++) {

p r i n t f ( ” %s ” , args [ i ] ) ;
}
p r i n t f ( ”\n” ) ;
/∗ f o r c e b u f f e r e d o u t put t o t e r m i n a l b e f o r e i n v o k i n g e x e c ∗ /
f f l u s h ( stdout ) ;
execvp ( args [ 0 ] , args ) ;
e x i t ( 1 ) ; / / e x e c v p f a i l e d

} /∗ c h i l d ∗ /

i n t main ( ) {
p i d t pid = fork ( ) ;
i f ( pid ==0) c h i l d ( ) ;
i n t s t a t u s ;
p i d t c h i l d = wait (& s t a t u s ) ;
i n t r e t = WEXITSTATUS( s t a t u s ) ;
p r i n t f ( ” Finished c h i l d %d s t a t u s %d\n” ,

chi ld , r e t ) ;
return r e t ;

} /∗ main ∗ /
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13 Signals

The example of the previous section didn’t have any communication be-
tween parent and child processes. One simple way but limited way for
processes to send information to each other is via signals. Signalling a pro-
cess can interrupt what it is doing, and gives it a small piece of information
(the signal type, a small integer). The various signals have names starting
with SIG and are defined in the <signal.h> library file.

Some signals are reserved for the kernel, while others can be uses by
ordinary processes. A process can catch many of the possible signals and
take some action in response, but a few (such as SIGKILL) can’t be caught.

Normally a process can only send signals to processes owned by the
same user, but the superuser (and thus kernel processes like init) can send
signals to any process.

Within a C program, you can issue signals via the procedure
kill(process ID, signal number );

You can send yourself a signal via
raise(signal number );

kill(getpid(), signal number );

which are equivalent to each other.

13.1 Common Signals

The kill command of Section 4.6 on page 39 actually sends a signal to the
process you designate. If you designate a job instead of a process, the signal
goes to the top-level (often, the only) process of the job. By default it sends
SIGTERM, which normally terminates the process – but the process can use a
handler (Section 13.2 on page 97) to catch the signal and ignore it or clean up
its resources before exiting. Thus the three commands

kill 40137

kill -TERM 40137

kill -15 40137

all send SIGTERM to the process with ID 40137. The commands
kill -KILL 40137

kill -9 40137

both send the SIGKILL signal, which kills the process immediately (not giv-
ing it a chance to catch and possibly ignore the signal).

Four other signals are reasonably common.
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• SIGCHLD means that a child process has terminated (Section 12.5 on
page 93). By default it is ignored.

• SIGINT by default terminates the process like SIGTERM; it is what the
system sends when you type control-C. A program might catch the
signal (Section 13.2) and ask the user for confirmation before quitting.

• SIGTSTP suspends the process; it corresponds to control-Z and can be
caught.

• SIGSTOP can’t be caught; it pauses the process until the next SIGCONT.

• SIGUSR1 and SIGUSR2 have no built-in meaning, and by default kill the
process. They can be used to experiment with signalling and catching
signals.

• SIGHUP initially meant “signal hangup” – that the modem associated
with a terminal had disconnected, often because the user hung up the
phone connected to the modem. If your process is in the foreground,
the sensible thing is to terminate it. However, it can catch the signal
and do something else. A common convention is for a long-running
background process (not connected to a terminal), like a server, to
reinitialize itself, perhaps by re-reading a potentially changed initial-
ization file.

A process can use the SIGALRM signal to interrupt itself after a time inter-
val.

alarm(seconds );

sends the process SIGALRM in the given number of seconds. It is different
from sleep because the process continues executing, not waiting for the
interval to expire. alarm(0) turns off the alarm timer.

kill -l (lower-case L) lists all the signal names and their numbers.

13.2 Signal Handlers

A program can set up a signal handler for each signal it’s allowed to catch.
You can have one handler for all your signals, or separate ones for different
signals. A signal catcher has the general form
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void catcher(int signum) {
handle the signal

possibly differently for each signal

} /* end catcher */

You tell the kernel which catcher to use for what signal with the signal

function from <signal.h> (which also defines all the signal names). It takes
two parameters: a signal number, and the name of the catcher. Thus

void reinitialize(int signo) {
redo whatever the process did when it started

} /* reinitialize */

void cleanup(int signo) {
close files, etc.

} /* cleanup */

...

signal(SIGHUP, reinitialize)

signal(SIGTERM, cleanup)

signal(SIGINT, cleanup)

The handler can inspect the signo parameter and perform different actions
depending on which signal it got, or you can have separate handlers for
each signal and ignore signo, or you can have some mixture of both ap-
proaches.

When the handler returns to its “caller,” processing resumes wherever
the program was executing before the signal. The only way to tell the rest
of the program that something has happened is to set some global variable,
which the normal code can examine when convenient. Thus for example

int INTsignaled = 0;

void handleINT(int signo) { INTsignalled = 1; }
...

signal(SIGINT,handleINT);

while (...) {
something that shouldn’t be interrupted

if (INTsignaled) break;

} /* while */

normal termination

There are two default handlers: SIG IGN ignores the signal and SIG DFL

restores the default action for the signal.
On some systems, after you catch a signal, it is reset back to the de-

fault action. On the CASlab systems this currently happens only if you use
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the -ansi compiler flag. To be safe and portable each handler should call
signal again to re-enable catching whatever signal invoked it.

To wait for a signal to arrive, the process can invoke pause(), which is
the equivalent for signals of wait for child processes. When a signal arrives,
the catcher (if any) is invoked, and when it returns the program continues
after the call to pause.

Figure 19 on page 102 shows a simple program that creates several child
processes and waits for all of them to finish via pause and a handler for
SIGCHLD; contrast it with Figure 17 on page 94. There are several subtleties
about this program, which you can discover by running it and sending it
various signals.

• The main program sets up handlers before using fork to create the
child processes. This means that each child has the same handlers as
the main program, albeit in separate address spaces.

• SIGTERM and SIGINT are sent to the main process and all its children,
so each responds to it independently.

• The sleep system call wakes up early if the process receives a signal,
so if you type a control-C, all the children finish quickly instead of
waiting for their time interval to expire.

The following shows one example, sending SIGTERM to the parent process
after one child finishes. I added the line numbers for ease of reference:

1 dal@linux3:~/notes/progs$ ./sigpause&

2 [2] 9173

3 dal@linux3:~/notes/progs$ 9173 creating 3 children, sleep 5

4 I am child 1 9175

5 I am child 2 9176

6 I am child 0 9174

7 jobs

8 [1]+ Stopped emacs makefile

9 [2]- Running ./sigpause &

10 Child 0 9174 done

11 Process 9173 caught 17: child done, 2 left

12 dal@linux3:~/notes/progs$ kill %2

13 Process 9173 caught 15: terminating 9173 with 2 children left.

14 Process 9175 caught 15: terminating 9175 with 3 children left.
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15 Process 9176 caught 15: terminating 9176 with 3 children left.

16 [2]- Exit 10 ./sigpause

17 dal@linux3:~/notes/progs$

• On line 1, I start the program in the background; line 2 says it becomes
job 2, process 9173.

• Three child processes start on lines 4-6

• On line 7, I type the jobs command to the prompts of line 3.

• On line 10, Child 0 finishes, and on line 11 the parent catches signal
17, SIGCHLD.

• On line 12 I send SIGTERM (the default) to “job 2,” all three remaining
processes. Each catches it: the parent on line 13, child 1 on line 14, and
child 2 on line 15.

• Line 16 is the shell reporting that job 2 has exited with status 10, the
argument to exit.

Notice that the children show “3 children left” when terminated. That is
because the fork call makes an exact copy of the parent when it spins off
each child process, which means they have copies of exactly the same data
(numChildren) and signal handlers as the parent. A slightly more complex
example should have the child processes setting up their own handlers
when they start, with their own SIGINT and SIGTERM handlers to produce
slightly different messages that don’t refer to non-existent children.

When I send a signal to a child process, only that one responds:

1 dal@linux3:~/notes/progs$ ./sigpause&

2 [2] 9228

3 dal@linux3:~/notes/progs$ 9228 creating 3 children, sleep 5

4 I am child 1 9230

5 I am child 2 9231

6 I am child 0 9229

7 Child 0 9229 done

8 Process 9228 caught 17: child done, 2 left

9 kill -INT 9231

10 Process 9231 caught 2: ignored 2

11 Child 2 9231 done
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12 dal@linux3:~/notes/progs$ Process 9228 caught 17: child done, 1 left

13 Child 1 9230 done

14 Process 9228 caught 17: child done, 0 left

15

16 [2]- Done ./sigpause

17 dal@linux3:~/notes/progs$

• Lines 1-8 are similar to lines 1-11 of the previous example.

• On line 9 I reply to the prompt of line 3 by sending SIGINT (code 2)
to child 2. On line 10 it catches and ignores the signal, but since the
signal interrupts the sleep, child 2 finishes immediately anyway (line
11). Had I written more complex code in the child function, such as
looping a few times to repeat the sleep, and printing a message just
after each sleep, you would have seen that it managed to continue
after the interrupt.

• On lines 12-14 the remaining child finishes and the parent responds to
SIGCHLD.

It would make a good exercise to modify sigpause.c to:

• Use different signal handlers in parent and child. Note: the parent still
needs to set up the SIGCHLD handler before creating any children.

• Print a message when the sleep command wakes up showing the
time elapsed since the call, to show that it terminates early when in-
terrupted.

Version 1.6 101



Figure 19: Simple Example of SIGCHLD Handler
/∗ Example o f s i g n a l h a n d l i n g and pause , $ R e v i s i o n : 0 . 3 $

$ Id : s i g p a u s e . c , v 0 . 3 2 0 1 3 / 0 7 / 2 9 1 6 : 3 4 : 0 8 dalamb Exp $ ∗ /
# include <sys/types . h>
# include <unistd . h>
# include <s i g n a l . h>
# include <s t d i o . h>
# include <s t d l i b . h>

# define NUM CHILD 3
# define SLEEP INTERVAL 5

/∗ Index ’ th c h i l d p r o c e s s i d e n t i f i e s i t s e l f b e f o r e and a f t e r
i t s l e e p s f o r a m u l t i p l e o f t h e i n t e r v a l , t h en e x i t s . ∗ /

void c h i l d ( i n t index ) {
unsigned i n t i n t e r v a l = ( index +1)∗SLEEP INTERVAL ;
p r i n t f ( ” I am c h i l d %d %d\n” , index , ( i n t ) getpid ( ) ) ;
s l eep ( i n t e r v a l ) ;
p r i n t f ( ” Child %d %d done\n” , index , ( i n t ) getpid ( ) ) ;
e x i t ( index ) ;

} /∗ c h i l d ∗ /

i n t numChildren = NUM CHILD;

/∗ Handler f o r a l l s i g n a l s . I g n o r e most , h a n d l e
SIGCHLD and SIGTERM ∗ /

void c a t c h e r ( i n t signo ) {
p r i n t f ( ” Process %d caught %d : ” , ( i n t ) getpid ( ) , s igno ) ;
i f ( signo==SIGCHLD) {

numChildren −−;
p r i n t f ( ” c h i l d done , %d l e f t \n” , numChildren ) ;

} e lse i f ( signo==SIGTERM) {
p r i n t f ( ” terminat ing %d with %d chi ldren l e f t .\n” ,

( i n t ) getpid ( ) , numChildren ) ;
e x i t ( 1 0 ) ;

} e lse p r i n t f ( ” ignored %d\n” , signo ) ;
s i g n a l ( signo , c a t c h e r ) ; /∗ s e t up same h a n d l e r a g a i n ∗ /

} /∗ c a t c h e r ∗ /

/∗ S e t up s i g n a l h a n d l e r , c r e a t e s e v e r a l c h i l d r e n
and wa i t f o r a p p r o p r i a t e number o f SIGCHLD s i g n a l s . ∗ /

i n t main ( ) {
s i g n a l (SIGCHLD, c a t c h e r ) ;
s i g n a l ( SIGINT , c a t c h e r ) ;
s i g n a l (SIGTERM, c a t c h e r ) ;
p r i n t f ( ”%d c r e a t i n g %d chi ldren , s leep %d\n” ,

( i n t ) getpid ( ) , NUM CHILD, SLEEP INTERVAL ) ;
i n t i ;
for ( i =0 ; i<NUM CHILD; i ++) {

p i d t pid = fork ( ) ;
i f ( pid ==0) {

c h i l d ( i ) ; e x i t (−1) ;
}

}
while ( numChildren>0) pause ( ) ;
return 0 ;

} /∗ main ∗ /
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14 Pipes

Section 4.2 on page 30 describes what pipes do in the context of the shell;
this section shows you how to write C programs that create and use pipes.
You must already understand Chapter 8 Sections 1-3 of Kernighan and Ritchie,
covering low-level I/O using file descriptors, open, close, read, write, and
the errno error-reporting variable. You should also be familiar with Sec-
tions 12 and 13 concerning processes and signals.

There are two sorts of pipes: those meant for short-term communication
among parent and child processes (such as those created for the | operator
by a shell), and longer-term file-like named pipes.

14.1 Basic Pipes

A pipe is a stream with both input and output “ends.” Normally one pro-
cess writes to one end and another reads from the other.

int pipe(int pipe fd[2]);

from <unistd.h> creates both ends – the read end in pipe fd[0], and the
write end in pipe fd[1]. After creating the pipe, the process would use
fork (Section 12.3 on page 89) to create a child process. Since both pro-
cesses are initially identical (aside from the return value from fork), both
have access to the same file descriptors. One would read from the first file
descriptor (using the low-level read system call), and the other would write
to the second (using the low-level write system call). Alternatively, the par-
ent could create two different children that would communicate with each
other.

This kind of pipe is normally implemented by the kernel as a fixed-size
buffer in memory, so it is much faster than passing through the file system
(see activity timings in Table 4 on page 88). When the buffer fills, the writer
blocks waiting for free space; when it empties, the reader blocks waiting for
content. Since the process manager (Section 12.2 on page 88) switches pro-
cesses when the current one blocks, on a single processor the two processes
take turns executing (along with any other processes in the system at the
time).49 Since the process manager also switches processes when a higher-
priority one needs to run, and when a process’ running time exceeds the
quantum, the two can switch while the buffer is only partly full. Buffers

49On a multiprocessor, the two can work in parallel when not waiting for pipe I/O.
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will be at least 512 bytes on any POSIX-compliant UNIX system; on CASlab
they are currently 216 bytes (64 Kb).

Recall that a call to read from a normal file “blocks” when waiting for
the disk to spin to the right position and transfer data. With a pipe, a read
blocks when there is no data in the buffer and it is possible for some other
process to eventually write to it. What this means is that there must be some
other process with a file descriptor for the same pipe opened for writing. If
there is no such process, the read will return 0, meaning “end of file.” When
you first create a pipe, both ends of the pipe are open, one for reading and
one for writing, so if the reading process goes first it will block.

Figures 20 and 21 on pages 108 and 109 show a simple use of a pipe.
The parent writes its command-line arguments to the pipe; the child reads
from the pipe and writes the results to standard output, inverting the case
of all letters. To show exactly how the characters are buffered, the parent
puts double-colons (::) between segments it writes (its arguments), and
the child puts square brackets ([]) around segments it reads. Debugging
messages from both parent and child processes go to stderr, which appears
immediately on the terminal. Normal output from the child process goes to
standard output.

The child closes the output end of the pipe. When the child starts, each
process has open file descriptors for both ends of the pipe; if the child didn’t
close the write end, there would always be a file descriptor open for writing,
and the child would hang on its last read when the parent closed its own
copy of the write descriptor.

Running the program, directing standard output to a file, yields:

dal@linux3:~/notes/progs$ ./caseEcho Some argUMenTS to be Inverted >ceout

Child 9390 maxLen 10

Writing ’./caseEcho’

Writing ’Some’

Just read 10 characters

Writing ’argUMenTS’

Just read 6 characters

Writing ’to’

Writing ’be’

Writing ’Inverted’

Just read 10 characters

Just read 10 characters

Just read 9 characters

dal@linux3:~/notes/progs$ cat ceout
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[./CASEeCHO][::sOME][::ARGumENt][s::TO::BE:][:iNVERTED]

dal@linux3:~/notes/progs$

There are several things to note about the output:

• The terminal output of caseEcho all results from printing to stderr.

• The parent’s “writing” lines (corresponding to individual calls on write)
are interleaved with the child’s “echo” lines (corresponding to indi-
vidual calls on read).

• The read calls yield varying number of bytes, often not the 10 re-
quested.

• consequently, the arguments are echoed in different chunks from those
you’d expect from the writes.

14.2 Multiple Readers and Writers†
It is possible to have multiple readers and writers for a single pipe, but in-
teraction can be tricky because of the way pipes are buffered. Suppose a
multiple-process application considers a “record” to be the data a writer
sends in one operation, such as a line terminated by newline. On Linux the
low-level read operation works on streams of bytes, with no way to detect
internal formatting such as “end of record” until the process has potentially
read part-way into the next “record.” Furthermore, a read isn’t guaranteed
to read exactly the number of bytes requested (as seen in the previous sec-
tion); it could read fewer depending on how much data is left in the buffer.
Thus multiple readers are likely to get partial or overlapping information.
Because of the unpredictability of which process the manager will choose
to run next, it is also possible for one reader to starve the others: reading all
the input before the others get any data.

One saving grace of the way pipes work is that writes of less than a
certain size50 are required to be atomic. This means that the write must finish
before anyone else can write to the same pipe. If the buffer fills up before
such a “small” write finishes, the only legal sequence of events is for some
reader to partly empty the data, followed by the partial write finishing. All
other potential writers are blocked during this time. However, writes of
larger amounts of data may be split up and interleaved.

50At least 512 bytes for POSIX; 4 Kb on Linux.
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Instead of having multiple writers for one pipe, you can create one pipe
per writer; it is possible for a single reader to wait for any of these pipes to
have data. However, this requires mechanisms beyond the scope of these
notes; consult the manual entries for select and pselect.

The fundamental ideas of coordinating readers and writers are taught
in courses about concurrent programming, such as CISC 324: Operating
Systems.51

14.3 Named Pipes (FIFOs)

A named pipe, or FIFO (First In, First Out) is a special kind of file, stored in
a directory, and thus has a name that multiple programs can look up. You
create a FIFO with the system call

int mkfifo(pathname, permissions )

from <sys/stat.h>. The name and permissions are just what you’d expect
for creating any file. A return value of -1 means that an error occurred, and
errno gives the error code. EEXIST means there is already a file of that name.
The pathname can then be opened for reading or writing as with a normal
file.

In the shell, the equivalent of the mkfifo system call is the pair of com-
mands:

mkfifo pathname

chmod permissions pathname

Once opened, a FIFO behaves like a normal pipe as described in Sec-
tion 14.1. Figure 22 on page 110 shows an example of FIFO behaviour via
shell commands; I added line numbers by hand. The first 10 lines show
two input files. The FIFO is created on line 11, and line 12 spawns a pair
of background processes (connected by a basic, unnamed, pipe) that sort
input from the FIFO and run the results through uniq to eliminate duplicate
lines. Since no one has opened the FIFO for writing yet, on its first read it
pauses waiting for some process to do so. Line 14 creates a background pro-
cess that writes the contents of source1 to the FIFO and waits for more in-
put from the terminal (- argument to cat); without this wait, the sort|uniq

job would terminate as soon as its only input source (this first cat process)
finished writing. Line 16 spawns a second cat process that outputs the con-
tents of source2 to the FIFO and terminates. Line 19 resumes the first cat
process; line 20 is the shell reporting what job was resumed. Lines 21-22 are

51http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-324.html
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new input; in between lines 22 and 23 I typed a control-D to terminate this
input. After this, there are no more writers for the FIFO, so it returns end-
of-file to the sort process’ last read operation . sort then performs its work,
outputting results to uniq, which prints on standard output; lines 23-30 are
the results. Lines 21-33 are output from the shell after all jobs finish.
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Figure 20: Pipe Example (a): Case Inversion of Program Arguments
/∗ Use a p i p e t o i n v e r t t h e c a s e o f l e t t e r s in program arguments . $ R e v i s i o n : 0 . 2 $

$ Id : c a s e E c h o . c , v 0 . 2 2 0 1 3 / 0 7 / 2 9 1 6 : 3 4 : 0 8 dalamb Exp $ ∗ /
# include <sys/types . h>
# include <unistd . h>
# include <s t d l i b . h>
# include <s t d i o . h>
# include <errno . h>
# include <sys/wait . h>
# include <s t r i n g . h>
# include <ctype . h>

i n t fd [ 2 ] ; /∗ p i p e f i l e d e s c r i p t o r s , 0 f o r read , 1 f o r w r i t e ∗ /

/∗ E r r o r r e p o r t i n g ∗ /
void showError ( char ∗msg) {

f p r i n t f ( s tderr , ”%s errno %d (0 x%x ) : %s\n” ,
msg , errno , errno , s t r e r r o r ( errno ) ) ;

f f l u s h ( stdout ) ; f f l u s h ( s t d e r r ) ;
} /∗ showError ∗ /

/∗ Pa re n t w r i t e s t o t h e p i p e ∗ /
void parent ( i n t argc , const char∗ argv [ ] ) {

i n t i ;
for ( i =0 ; i<argc ; i ++) { /∗ w r i t e e a c h argument ∗ /

f p r i n t f ( s tderr , ” Writing ’%s ’\n” , argv [ i ] ) ; f f l u s h ( s t d e r r ) ;
i f ( ( i>0 && write ( fd [ 1 ] , ” : : ” , 2 ) < 0) /∗ omit : : f o r arg 0 ∗ /

| |
write ( fd [ 1 ] , argv [ i ] , s t r l e n ( argv [ i ] ) ) <0) /∗ w r i t e argument ∗ /

{ /∗ one o f t h e w r i t e s f a i l e d ∗ /
f p r i n t f ( s tderr , ” Write e r r o r %s\n” , s t r e r r o r ( errno ) ) ;

} /∗ i f ∗ /
f f l u s h ( s t d e r r ) ;

} /∗ f o r ∗ /
c l o s e ( fd [ 1 ] ) ; /∗ done with w r i t i n g ∗ /
/∗ wai t f o r t h e e c h o i n g c h i l d t o f i n i s h ∗ /
i n t s t a t u s ; p i d t pid = wait (& s t a t u s ) ;
i f ( pid==−1 && errno !=ECHILD)

f p r i n t f ( s tderr , ”Wait e r r o r %d (0 x%x ) : %s\n” ,
s ta tus , s ta tus , /∗ show f u l l s t a t u s , not j u s t e x i t c o d e ∗ /
s t r e r r o r ( errno ) ) ;

} /∗ p a r e n t ∗ /
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Figure 21: Pipe Example (b): Case Inversion of Program Arguments
/∗ C h i l d r e a d s from t h e p i p e and e c h o e s , i n v e r t e d , t o s t d o u t ∗ /
void c h i l d ( i n t maxLen ) {

f p r i n t f ( s tderr , ” Child %d maxLen %d\n” , ( i n t ) getpid ( ) , maxLen ) ;
c l o s e ( fd [ 1 ] ) ; /∗ we ’ l l n e v e r w r i t e t o i t ∗ /
char ∗buf = malloc ( maxLen + 2 ) ;
while ( 1 ) {

i n t len = read ( fd [ 0 ] , buf , maxLen ) ;
i f ( len <=0) {

i f ( len ==0) { p r i n t f ( ”\n” ) ; f f l u s h ( stdout ) ; e x i t ( 0 ) ; }
e lse { showError ( ”Read” ) ; e x i t ( errno ) ; }

}
f p r i n t f ( s tderr , ” J u s t read %d c h a r a c t e r s \n” , len ) ;
f f l u s h ( s t d e r r ) ;
putchar ( ’ [ ’ ) ; i n t i ;
for ( i =0 ; i<len ; i ++) {

char c = buf [ i ] ;
i f ( i s a l p h a ( c ) ) c = is lower ( c ) ? toupper ( c ) : tolower ( c ) ;
putchar ( c ) ;

} /∗ f o r ∗ /
putchar ( ’ ] ’ ) ; f f l u s h ( stdout ) ;

} /∗ w h i l e ∗ /
} /∗ c h i l d ∗ /

/∗ C r e a t t h e p i p e and c h i l d p r o c e s s ∗ /
i n t main ( i n t argc , const char∗ argv [ ] ) {

i f ( pipe ( fd )<0) {
showError ( ”Can ’ t open pipe ” ) ;
e x i t ( 1 ) ;

}
i n t maxLen = 0 ; i n t i ;
for ( i =0 ; i<argc ; i ++) {

i n t len = s t r l e n ( argv [ i ] ) ;
i f ( len>maxLen ) maxLen = len ;

}
p i d t chi ldID = fork ( ) ;
i f ( chi ldID ==0)

parent ( argc , argv ) ;
e lse i f ( childID >0)

c h i l d ( maxLen ) ;
e lse

f p r i n t f ( s tderr , ” Error from fork : %d %s\n” ,
( i n t ) childID , s t r e r r o r ( errno ) ) ;

f f l u s h ( stdout ) ;
e x i t ( 0 ) ;

} /∗ main ∗ /
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Figure 22: FIFO Behaviour Via Shell Commands

1 dal@linux3:~/notes/progs$ cat source1

2 This is a sample.

3 It will be sorted.

4 Then run through uniq.

5 So the next line will be deleted.

6 This is a sample.

7 But this line won’t.

8 dal@linux3:~/notes/progs$ cat source2

9 This is a sample.

10 It is in a separate file.

11 dal@linux3:~/notes/progs$ mkfifo FIFO

12 dal@linux3:~/notes/progs$ sort <FIFO | uniq &

13 [1] 18091

14 dal@linux3:~/notes/progs$ cat source1 - >FIFO&

15 [2] 18092

16 dal@linux3:~/notes/progs$ cat source2 >FIFO

17

18 [2]+ Stopped cat source1 - > FIFO

19 dal@linux3:~/notes/progs$ %2

20 cat source1 - > FIFO

21 This is a line typed at the terminal.

22 After control-D the sort will run.

23 dal@linux3:~/notes/progs$ After control-D the sort will run.

24 But this line won’t.

25 It is in a separate file.

26 It will be sorted.

27 So the next line will be deleted.

28 Then run through uniq.

29 This is a line typed at the terminal.

30 This is a sample.

31

32 [1]+ Done sort < FIFO | uniq

33 dal@linux3:~/notes/progs$
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15 The make Command

Many of the programs you write for introductory courses consist of a single
source file and produce a single product, an executable program. When
problems become significantly more complex, such as when you have many
files to compile, building your program or rebuilding it after you change
something can become complex as well.52 make is a tool for describing such
build processes, allowing a single command to rebuild an entire system.

15.1 Build Processes

When you start programming in C or any other language, you typically
build your executable program in a single step, perhaps by issuing a shell
command:

gcc -o myProg myProg.c

If your usage of gcc becomes more complex, you may find yourself adding
command line options, such as -W to specify warnings to check for, or -D

to specify variable definitions. Since it is tedious and error-prone to have
to retype such options every time, you might put your command in a shell
script:53

dal@linux3:~/notes/progs$ ls -lt fork*

-rw------- 1 dal student 1383 Jul 29 10:31 fork.c

dal@linux3:~/notes/progs$ cat recompile

# recompile sample program fork.c

gcc -Wall -DVARIANT=Intel -o fork fork.c

dal@linux3:~/notes/progs$ ./recompile

dal@linux3:~/notes/progs$ !ls

ls -lt fork*

-rwx------ 1 dal student 8733 Aug 3 09:27 fork*

-rw------- 1 dal student 1383 Jul 29 10:31 fork.c

dal@linux3:~/notes/progs$

If you want to specify options for the linker as well as the compiler, you

52Java is a partial exception, with its own built-in make-like process. It often (but not
always) requires only a single compile command to rebuild a system; see Section 15.5 on
page 120.

53It isn’t necessary to know what the individual flags to gcc do – just that there are
several of them.
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might split this into two lines to keep straight which options apply to what
utility

# recompile sample program fork.c

gcc -Wall -DVARIANT=Intel -c fork.c

gcc -lsomeLib -o fork fork.o

Each of these is a simple example of a build process: the steps required to
turn at set of inputs into a set of outputs.

Figure 23 shows an abstraction of what goes on in a single step of a build
process. An input or output is normally a file; Section 15.4 on page 118

Figure 23: Abstraction of a Build Step

A step runs one “tool” taking several inputs and producing
an output. Some steps may produce more than one output.

discusses a few other things that might constitute “inputs.” The output of
one step might become the input of another; for example, each .o output of
a compilation step becomes an input of the final linking step.

Consider the program summarized in Table 5: an oversimplified simu-
lation of a set of elevators, perhaps a trivial subset of the old SimTower R©
PC game. One build process for this program is:

gcc -c random.c

gcc -c policy.c

gcc -c hardware.c

gcc -c elevator.c

gcc -c input.c

gcc -o elevator elevator.o hardware.o random.o policy.o input.o

There are several things to note about this example. This is only one possible
script, since the first four steps could be done in any order. However, the
fifth step must be last since it depends on the outputs of each of the other
steps.

Each of the compilation steps has some implicit inputs: the header files
#included in them. A simple script file doesn’t record these dependen-
cies, which can become important when you need to figure out what to
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Table 5: Modules for a Simple Elevator Simulation
Module Purpose
elevator.c Main program; calls functions from other mod-

ules
hardware.c Simulation of buttons and motors and how to get

safely from one floor to another (definitions)
hardware.h declarations for hardware.c
policy.c Policies for which floor to select next given cur-

rent state of elevator and buttons (definitions).
input.c Input functions (definitions). Generates a se-

quence of timed “button pushes” either by read-
ing a file or by using random numbers or by
some combination.

input.h Input functions (declarations)
policy.h declarations for policy.c
random.c Random number functions (definitions)
random.h Random number functions (declarations)

recompile after a change. Suppose policy.c and policy.h change, perhaps
to add a new field in some struct. The only steps that need to be rerun
are the compilations of those files that #include policy.h (in this case, just
policy.c and elevator.c), plus the final linking. Rerunning the other steps
is a waste of resources.

The make program lets you describe build processes in a makefile, which
guides it in running the minimum number of steps after you change a source
file. You can think of make as a tool that takes many inputs: all your source
files, plus the makefile. It can produce many outputs: for example, all your
.o files and the final executable program.

15.2 Basics of make and makefiles

Figure 24 shows a makefile for the system of Table 5. The first three lines de-
fine variables – similar to variables in a shell. They are used to avoid having
to type the same string multiple times, and to ensure that when some aspect
of the build process needs to change, they change consistently throughout
the build process. In this example, CC says which compiler to use, CFLAGS
says which command line options to pass to the compiler, and OFILES lists
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Figure 24: A Simple makefile

CFLAGS=-Wall

CC=gcc

OFILES=random.o policy.o hardware.o elevator.o input.o

elevator: ${OFILES}
${CC} -o elevator ${OFILES}

random.o: random.c random.h

${CC} -c ${CFLAGS} random.c

input.o: input.c input.h random.h

${CC} -c ${CFLAGS} input.c

hardware.o: hardware.c hardware.h

${CC} -c ${CFLAGS} hardware.c

policy.o: policy.c policy.h hardware.h

${CC} -c ${CFLAGS} policy.c

elevator.o: elevator.c elevator.h input.h policy.h

${CC} -c ${CFLAGS} elevator.c

cleanall: clean

rm -f elevator

clean:

rm -f ${OFILES}

makefile for the elevator simulation. It can be simplified using
the implicit rule for compiling .o files from .c files.

all the object files that make up the executable program.54

Each subsequent pair of lines describes one step in the build process,
and has the form:

target : prerequisites

recipe

The first line starts in column 1; the second starts with a tab. The target is

54You can also define variables on the make command line, using the same syntax. This
overrides definitions of the same variables in the makefile. Thus make CFLAGS= would set
CFLAGS to null, meaning the compilation steps wouldn’t make the -Wall checks.
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the output of the step; the prerequisites are the inputs. Abstractly, such an
entry describes when an output needs to be brought up to date and how to
do so. When you ask make to build a specific target, it proceeds as follows:

1. If the target doesn’t exist but there is no rule for regenerating it, print
an error message and abort make. If the target exists and is more recent
than all its prerequisites, nothing need be done (so go on to the next
target). Otherwise the target needs to be rebuilt (so continue to step 2).

2. For each prerequisite that is the output of some other step, recursively
apply the process starting at Step 1.

3. When all prerequisite steps finish successfully, run the recipe. A recipe
is usually a single shell command, but can be a sequence of such com-
mands.

4. If the recipe fails, print an error message and abort make.55

5. If the recipe succeeds, return to whatever step caused this one to run.

Thus if you change policy.c, only the steps for policy.o and elevator

need to be run. If you also change policy.h, then the elevator.o step also
needs to run.

Step 3 only requires that all the prerequisites finished successfully; it
doesn’t actually require that they produce the expected “files.” This is why
the cleanall step in Figure 24 proceeds even though the clean step doesn’t
produce any file named clean.

Figure 25 shows the build graph for the system in Table 5 and illustrates
what happens if input.h changes. Boxes show what files change (input.h),
what steps need to be rerun (two gcc compilations and one gcc link), and
what files are regenerated (input.o, elevator.o, and elevator). Unboxed
files don’t change and unboxed steps don’t get rerun.

You run make with the command
make [ -f makeFileName ] [ flags ] [ outputFileName ]

Table 6 summarizes the flags you can pass to make; they are described more
fully elsewhere in this section. The “output file name” is also called the
target of the build process; you are “taking aim” at generating that particular
file, and tracing a path through prerequisite graph to get to it. If you omit

55With the -k command line flag, instead just skip all the steps that depend on this one
and go on to any other pending targets.
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Figure 25: Processing when input.h Changes

Graph of dependencies for the elevator program of Ta-
ble 5. When input.h changes, input.o, elevator.o, and
elevator must be rebuilt.

the -f makeFileName it looks for one called makefile in the current directory.
If you omit the outputFileName it builds the output of the first step in the
make file. make figures out an order in which to run the steps so that every
generated file is produced before it gets used. If several steps (such as the
.c file compilations) can be run in parallel, it is free to pick any order it
chooses (but in fact in the current version of make it uses the order in which
you listed the steps in the makefile).

15.3 Intermediate make

There are a few things to note about the example of Figure 24 on page 114.
First, the commands are quite repetitive. Every time you generate a .o

file from a .c file, you run a command that differs only in which source
file it names. It turns out that all the commands mentioning ${CFLAGS} can
be omitted. make has a collection of implicit rules that cover such common
patterns. Writing implicit rules is beyond the scope of these notes; the Free

Version 1.6 116



Table 6: Flags for make
Flag Page Meaning
-B 117 Rebuild all targets
-f filename Use a specific makefile.
-k 117 Keep going after a step fails.
-n Show what recipes would be executed,

without actually running them.
var=value 119 set a variable, overriding the definition (if

any) in the makefile.

Software Foundation lists the standard ones.56

Second, the step labeled clean has no dependencies and doesn’t ac-
tually generate a file called clean; it just removes all the generated files
(the executable file and all the object files). This kind of step is commonly
used instead of writing a tiny bash script that performs a standard task. A
clean step in particular is useful for removing object files to save space once
you’ve built the executable program (which, in many cases, you would have
moved somewhere from which other people can find and execute it).

You can use a step like clean as part of forcing a full rebuild of a sys-
tem. You can use the touch command on a small number of source files
to force a recompilation of everything that depends on them, but for a full
recompilation a step like clean is better. Even better is to use the -B com-
mand line flag, which for each step assumes rebuilding is always necessary;
it pretends all source files have changed.

If a step in the build process fails (that is, returns a nonzero exit sta-
tus), make aborts.57 Putting a hyphen before a command suppresses this
behaviour.

Finally, modules like input.c and elevator.c probably #include li-
brary declaration files like <stdio.h>, the standard I/O package, but the
dependency lines didn’t list them. Conventionally, files that change ex-
tremely rarely, like system library files, don’t get mentioned. This means
that if such a library does change, make won’t notice. In this case you must
manually delete the object files (via make clean) and then rerun make to
produce the executable.

56http://www.gnu.org/software/make/manual/html node/Catalogue-of-Rules.html
57If you supply the -k switch on the command line, it keeps going but doesn’t try to run

any steps that depend on the output of the failed step.
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Writing out all the dependencies can be tedious, especially if you need
to discover and record indirect dependencies, such as when one header file
includes another. Many modern compilers will generate dependency infor-
mation for inclusion in a makefile; the gcc compiler does so with the -M

switch.

15.4 Fundamentals of Build Management†
This section describes some of the fundamental concepts underlying build
management systems, and outlines how an ideal one would operate. I know
of no such ideal system.

A build process corresponds to a directed graph; the graph has to be
acyclic for the build process to terminate. Directed acyclic graphs define
partial orders: some files depend on (“are related to”) other files, but there is
not necessarily a relationship between every pair of files. What a build sys-
tem does is perform a topological sort of the partial order, resulting in one of
many possible total orders of the files: a linear sequence of nodes where each
node comes after all its prerequisites. Directed graphs and orders are dis-
cussed in courses involving graph theory, such as CISC 203: Discrete Mathe-
matics for Computing Science.58

Technically, a source is any object that cannot be recreated exactly via an
automated process. It is conventional to refer to program files like .c files as
“source files,” and indeed most of them fit the definition – they are written
by human beings instead of by programs. However, there are program gen-
erators that create other programs. A primary example is a parser generator
like bison, which takes a grammar description as its source and outputs C
or C++ (code and header files). Figure 26 shows what a makefile looks like
with program generators. grammar.y is a source file written in the input lan-
guage for bison. grammar.tab.c and grammar.tab.h are the definition and
declaration files for the output of bison; they are generated files, not source
files. The steps for generating object files rely on a default rule.

An ideal build process, given the same source, produces identical gener-
ated files. “Source” is not equivalent to the conventional meaning of “source
file,” however. The definition covers more kinds of files than just program
code: Data from an experiment and input files for testing purposes both
count as source. The gcc compiler itself might change (although, fortu-
nately, this happens quite rarely). Also, in the example of Figure 24 on

58http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-203.html
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Figure 26: makefile with Program Generators

BISONOUTPUT=grammar.tab.c grammar.tab.h

GENERATED=*.o $BISONOUTPUT

OBJECT=main.o parser.o util.o

# relies on standard .o.c default rule

main.o: main.c parser.h util.h

util.o: util.h

parser.o: parser.c parser.h $BISONOUTPUT

$BISONOUTPUT: grammar.y

bison grammar.y

cleanall: clean

rm -f $GENERATED

clean:

rm -f *~

Use man bison for a little more on the parser generator. The
key idea is that parser.tab.c and its header file are gen-
erated files and not source files. Note especially the use of
variables to abstract the outputs of bison

page 114, the compilation and linker steps would produce different output
if the CC and CFLAGS variables change – or if the recipes change in any other
way. The makefile itself need not change: If, with the makefile of Figure 24
on page 114, you override a variable on the command like, such as

make CFLAGS="-mcpu=something " elevator

to change the type of machine for which gcc should generate code, all
the compilation steps need to be rerun. Thus these variables and recipes
are source objects; unfortunately make and many other build systems don’t
know this.

Typical build process managers like make have a simple notion of “change”
to a file: a step is rerun if any of its inputs has a modification date later
than at least one of its outputs. Unfortunately modification date is an im-
perfect reflection of change. If you add a comment to a source program,
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there is no need to regenerate the object file; it will be identical to the pre-
vious one. This is especially problematic when the output of a compilation
step might be used in a cascade of other compilation steps, as happens with
Java .class files; adding a comment to a widely-used .java file in principle
forces redundant recompilation of many other files. An ideal process would
notice when a newly-generated file is the same as the previous version, and
avoid rerunning later steps that depend on it.

There are a few programs that take a file as input and overwrite the same
file as output. The LATEX variant of the TEX document processor is like this;
it produces auxiliary files with information about things like forward refer-
ences to sections of the document. If you recorded such a file as a depen-
dency, the build process would never stabilize. This is another case where
it would help to be able to verify that the new version of an output was the
same as (or semantically equivalent to) the old version.

Sometimes you want to regenerate an old version of a system. For ex-
ample, you might have released version 1, and have gone on to work on
version 2. If a customer reports a bug in version 1, you would need to re-
build it exactly as it was at the time of release in order to track down the
error, which means starting from exactly the same source. There are ver-
sion management systems such as RCS,59 CVS,60 and Apache Subversion R©61

that can keep track of multiple versions and retrieve old ones. When a ver-
sion management system restores an old version of a source file, it typically
sets its modification date to that of the stored version. This interacts poorly
with the use of modification dates to indicate change – another case where
a clean step might be needed.

15.5 Other Build Systems

When there are many steps that can proceed in parallel (such as the gcc

compilations of Figures 24 on page 114 and 25 on page 116), some versions
of make can use multiple processors to perform several steps simultaneously.

Some languages such as Java have their own partial implementation of
dependency analysis; if you compile a Java language file, it will recompile
any other .java files it uses whose .class files are missing or out of date.
Such specialized implementations tend to have two sorts of limitations. The

59http://www.gnu.org/software/rcs/
60http://sourceforge.net/apps/trac/sourceforge/wiki/CVS
61http://subversion.apache.org/
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first and most obvious is that they don’t help with systems with source
files written in multiple languages. For example, a system with bison (Sec-
tion 15.4 on page 118) technically has two languages: C and the bison gram-
mar description language.

The second limitation is that, without the full dependency information
you’re expected to record in a makefile, they sometimes recompile too
much or too little.F as of 2010, javac sometimes failed to recompile some in-
direct dependencies.62 Suppose A.java depends on B.java, which depends
on C.java, and you change C.java. If you compile A.java, but B.class
is more recent than B.java, the compiler might not notice that C.java and
then B.java need to be recompiled.

make itself has several problems and limitations that begin to crop up as
your build processes become larger and more complex, particularly when
you are producing several variants of a system (such as debug versus pro-
duction versions, or versions for different operating systems). There have
been several variants of make that address some of its limitations, such as
imake63 and CMake.64 Apache AntTM65 is a very different portable build
tool (written in Java) that solves many of these problems.

62By the time you read this more recent versions of the Java compiler might have ad-
dressed these problems.

63http://en.wikipedia.org/wiki/Imake
64http://www.cmake.org/
65http://ant.apache.org/
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